Skip to main content

Advertisement

Log in

Climate policy: How to deal with ambiguity?

  • Research Article
  • Published:
Economic Theory Aims and scope Submit manuscript

Abstract

We study the impact of ambiguity and ambiguity attitudes on optimal adaptation and mitigation decisions when the future environmental quality is ambiguous and the decision maker’s (DM) preferences are represented by the \(\alpha \)-Maxmin Expected Utility model. We show that ambiguity aversion plays a significant role in designing an optimal climate policy that is different from risk aversion. We also focus on the induced effects of changes in ambiguity, captured by the arrival of additional information. We state that a change in the informational structure may trigger more efforts of both mitigation and adaptation depending on both the DM’s attitude toward ambiguity and her environmental preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Some recent contributions that deal with uncertainty, ambiguity or learning about future risks in a dynamic framework could be Keller et al. (2004), Karp and Zhang (2006), Traeger (2014), Millner et al. (2013) or Berger et al. (2017).

  2. IPCC: Inter-governmental Panel of experts on Climate Change.

  3. Adaptation may be disputable as a mean to preserve our future environment, since it may allow to pollute more because it reduces damages (See Schumacher 2016).

  4. In their paper, a model provided by an expert for instance is equivalent to a probability distribution over a climate outcome and model uncertainty refers to the concept of ambiguity.

  5. See Etner et al. (2012) or Gilboa and Marinacci (2013), for a survey.

  6. We thank an anonymous referee for suggesting us this extension.

  7. In our framework, individual well-being increases with respect to environmental quality. The latter is indeed random since it depends on various environmental variables such as temperature, rainfall, biodiversity and the like. It is always possible, for a given environmental variable to formalize this relation in an appropriate way. For instance, if we deal with temperature and denote by t the associated r.v., the environmental quality could be written: \(Q=Q_0-t\) and the distribution of Q can easily be deduced from the distribution of t.

  8. The authors thank an anonymous referee for helping us to clarify this point.

  9. We denote by \(V^{\prime }_{i}=\frac{\partial V(T,\rho )}{\partial i}\), for \(i=\rho ,T\).

  10. Under our assumptions, the second-order conditions are satisfied.

  11. Mitigation corresponds to self-protection and adaptation to self-insurance in general risk analysis (see Ehrlich and Becker 1972, for more details on these risk reduction tools).

  12. The authors discuss whether “good news” about climate sensitivity might be in fact “bad news” in the sense that it lowers societal well-being.

  13. If \(\alpha _{DM}>1/2\), the DM is called pessimistic; otherwise, she is optimistic.

  14. The numerical results are obtained with Mathematica 9.

  15. We obtain qualitatively similar results for a CRRA utility function.

  16. For the relevance of small values of \(\beta \), see Barseghyan et al. (2018).

  17. By now, we denote \(V^{\prime \prime }_{ij}=\frac{\partial ^2 V(T,\rho )}{\partial i \partial j}\).

References

  • Alary, D., Gollier, Ch., Treich, N.: The effect of ambiguity aversion on insurance and self-protection. Econ. J. 123, 1188–1202 (2013)

    Article  Google Scholar 

  • Asano, T.: Precautionary principle and the optimal timing of environmental policy under ambiguity. Environ. Resour. Econ. 47, 173–196 (2010)

    Article  Google Scholar 

  • Barseghyan, L., Molinari, F., O’Donoghue, T., Teitelbaum, J.C.: Estimating risk preferences in the field. J. Econ. Lit. 56(2), 501–564 (2018)

    Article  Google Scholar 

  • Berger, L., Emmerling, J., Tavoni, M.: Managing catastrophic climate risks under model uncertainty aversion. Manag. Sci. 63, 749–765 (2017)

    Article  Google Scholar 

  • Bouglet, T., Lanzi, T., Vergnaud, J.C.: Les conséquences décisionnelles de deux logiques autour du Principe de précaution. Recherches économiques de Louvain 72, 109–127 (2006)

    Article  Google Scholar 

  • Bramoulléé, Y., Treich, N.: Can uncertainty alleviate the commons problem? J. Eur. Econ. Assoc. 7(5), 1042–1067 (2009)

    Article  Google Scholar 

  • Buob, S., Stephan, G.: To mitigate or to adapt: how to combat with global climate change. Eur. J. Polit. Econ. 27, 1–16 (2011)

    Article  Google Scholar 

  • Chambers, R., Melkonyan, T.: Ambiguity, reasoned determination, and climate-change policy. J. Environ. Econ. Manag. 81, 74–92 (2017)

    Article  Google Scholar 

  • Dietz, S., Walker, O.: Ambiguity and insurance: capital requirements and premiums. J. Risk Insur. 86, 213–235 (2019)

    Article  Google Scholar 

  • Eeckhoudt, L., Gollier, Ch.: The impact of prudence on optimal prevention. Econ. Theory 26, 989–994 (2005). https://doi.org/10.1007/s00199-004-0548-7

    Article  Google Scholar 

  • Ehrlich, I., Becker, G.: Market insurance, self-insurance, and self-protection. J. Polit. Econ. 80, 623–648 (1972)

    Article  Google Scholar 

  • Etner, J., Jeleva, M., Tallon, J.-M.: Decision theory under ambiguity. J. Econ. Surv. 26, 234–270 (2012)

    Article  Google Scholar 

  • Freeman, M.C., Wagner, G., Zeckhauser, R.J.: Climate sensitivity uncertainty: when is good news bad? Philos. Trans. R. Soc. A 373, 20150092 (2015)

    Article  Google Scholar 

  • Ghirardato, P., Marinacci, M.: Ambiguity made precise: a comparative foundation. J. Econ. Theory 102, 251–289 (2002)

    Article  Google Scholar 

  • Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm. In: Acemoglu, D., Arellano, M., Dekel, E. (eds.) Advances in Economics and Econometrics: Theory and Applications, Tenth World Congress of the Econometric Society. Cambridge University Press, New York (2013)

    Google Scholar 

  • Gollier, Ch.: The Economics of Risk and Time. MIT Press, Cambridge (2001)

    Book  Google Scholar 

  • Heal, G., Kriström, B.: Uncertainty and climate change. Environ. Resour. Econ. 22, 3–39 (2002)

    Article  Google Scholar 

  • Heal, G., Millner, A.: Reflections: uncertainty and decision making in climate change economics. Rev. Environ. Econ. Policy 8, 120–137 (2014)

    Article  Google Scholar 

  • Hurwicz, L.: The generalized Bayes minimax principle: a criterion for decision making under uncertainty. Cowles Commun. Discuss. Pap. Stat. 335(1951), 1950 (1951)

    Google Scholar 

  • Ingham, A., Ma, J., Ulph, A.M.: Can adaptation and mitigation be complements? Clim. Change 120, 39–53 (2013)

    Article  Google Scholar 

  • IPCC 2014: Summary for policymakers. In: Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L. (eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 1–32. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  • Kane, S., Shogren, J.F.: Linking adaptation and mitigation in climate change policy. Clim. Change 45, 75–102 (2000)

    Article  Google Scholar 

  • Karp, L., Zhang, J.: Regulation with anticipated learning about environmental damage. J. Environ. Econ. Manag. 51, 259–279 (2006)

    Article  Google Scholar 

  • Keller, S., Bolker, B.M., Bradford, D.F.: Uncertain climate thresholds and optimal economic growth. J. Environ. Econ. Manag. 48, 723–741 (2004)

    Article  Google Scholar 

  • Klibanoff, P., Marinacci, M., Mukerji, S.: A smooth model of decision making under ambiguity. Econometrica 73, 1849–1892 (2005)

    Article  Google Scholar 

  • Lange, A., Treich, N.: Uncertainty, learning and ambiguity in economic models on climate policy: some classical results and new directions. Clim. Change 89, 7–21 (2008)

    Article  Google Scholar 

  • Lemoine, D.M., Traeger, Ch.: Ambiguous tipping points. J. Econ. Behav. Organ. 132, 5–18 (2016)

    Article  Google Scholar 

  • Moreno-García, E., Torres-Martínez, J.P.: Information within coalitions: risk and ambiguity. Econ. Theory 69, 125–147 (2020). https://doi.org/10.1007/s00199-018-1159-z

    Article  Google Scholar 

  • Millner, A., Dietz, S., Heal, G.: Scientific ambiguity and climate policy. Environ. Resour. Econ. 55, 21–46 (2013)

    Article  Google Scholar 

  • Parry, M.L.: Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, vol. 4. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  • Pindyck, R.: Fat tails, thin tails, and climate change policy. Rev. Environ. Econ. Policy 5, 258–274 (2011)

    Article  Google Scholar 

  • Pindyck, R.: Climate change policy: what do the models tell us? J. Econ. Lit. 51, 860–872 (2013)

    Article  Google Scholar 

  • Ravanelli, C., Svindland, G.: Ambiguity sensitive preferences in Ellsberg frameworks. Econ. Theory 67(1), 53–89 (2019). https://doi.org/10.1007/s00199-017-1095-3

    Article  Google Scholar 

  • Schumacher, I.: Climate policy must favour mitigation over adaptation, Working Papers 2016-633, Department of Research, Ipag Business School (2016)

  • Siniscalchi, M.: Bayesian Updating for General Maxmin Expected Utility Preferences Miméo. Department of Economics, Princeton University, Princeton (2001)

    Google Scholar 

  • Strand, J.: Implications of a lowered damage trajectory for mitigation in a continuous-time stochastic model. Energy Econ. 42(1), 43–49 (2014)

    Article  Google Scholar 

  • Traeger, Ch.: Why uncertainty matters: discounting under intertemporal risk aversion and ambiguity. Econ. Theory 56, 627–664 (2014). https://doi.org/10.1007/s00199-014-0800-8

    Article  Google Scholar 

  • Srikanthan, R., Mcmahon, T.A.: Stochastic generation of annual, monthly and daily climate data: a review. Hydrol. Earth Syst. Sci. Discuss. 5, 653–670 (2001)

    Article  Google Scholar 

  • Wu, J.H., Jia, Q.: A universal mechanism of extreme events and critical phenomena. Sci. Rep. 6, 21612 (2016)

    Article  Google Scholar 

  • Wu, Y., Yang, J., Zou, Z.: Ambiguity sharing and the lack of relative performance evaluation. Econ. Theory 66(1), 141–157 (2018). https://doi.org/10.1007/s00199-017-1056-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Etner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Preliminary versions of this paper were presented at EAERE, PET congress, BETA seminar, Strasbourg; we are grateful to all participants for their comments. We also thank two anonymous referees whose comments and suggestions helped us to significantly improve the paper.

Appendices

Appendices

1.1 A Proof of Proposition 1

Impact of risk aversion on mitigation Let us define \(z\equiv q+\varphi ((1-\rho )T)>0\).

  • If we consider that v(x) is a CARA utility function given by \(v(x)=-\frac{1}{\beta }\exp \left( -\beta x\right) \), where \(\beta \) is the coefficient of absolute risk aversion, Eq. (2) writes:

    $$\begin{aligned} -(y^{\prime }(T)+\rho )u^{\prime }(c(T,\rho )) = \int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp (-\beta z)h(q,T)dq, \end{aligned}$$
    (A.1)

    where we define \(h(q,T)\equiv (1-\rho )\varphi ^{\prime }(\cdot )\ell (q,T)- \left( \alpha \frac{\partial F_{\underline{\theta }}(q,T)}{\partial T}+(1-\alpha )\frac{\partial F_{\overline{\theta }}(q,T)}{\partial T}\right) >0\) and \(\ell (q,T)\equiv \left( \alpha f_{{\underline{\theta }}}(q,T)+(1-\alpha )f_{\overline{\theta }}(q,T)\right) >0\). Using Eq. (A.1), we can calculate the following derivativesFootnote 17:

    $$\begin{aligned}&V^{\prime \prime }_{TT}(T,\rho )=y^{\prime \prime }(T)+(1-\rho )^2\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\left[ \varphi ^{\prime \prime }(\cdot )-\beta \varphi ^{\prime 2}(\cdot )\right] \exp (-\beta z)\ell (q,T)dq\nonumber \\&\quad -\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp (-\beta z)L_{TT}(q,T)dq+2\varphi ^{\prime }(\cdot )(1-\rho )\beta \nonumber \\&\quad \int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp {-\beta z}L_T(q,T)dq<0 \end{aligned}$$
    (A.2)

    where we define \(L_T(q,T)\equiv \alpha \frac{\partial F_{{\underline{\theta }}}(q,T)}{\partial T}+(1-\alpha )\frac{\partial F_{{\overline{\theta }}}(q,T)}{\partial T}<0\) and, under Assumption 1, \(L_{TT}(q,T)=\alpha \frac{\partial ^2 F_{{\underline{\theta }}}(q,T)}{\partial T^2}+(1-\alpha )\frac{\partial ^2 F_{{\overline{\theta }}}(q,T)}{\partial T^2}>0\), and

    $$\begin{aligned} V^{\prime \prime }_{T\beta }(T,\rho )=-\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)h(q,T)dq<0 \end{aligned}$$
    (A.3)

    Using the implicit function theorem, \(\frac{dT^{*}}{d\beta }=-\frac{V^{\prime \prime }_{T\beta }}{V^{\prime \prime }_{TT}}\), we can easily state that \(\frac{dT^{*}}{d\beta }<0\).

  • If v is a CRRA utility function given by \(v(x)=\frac{x^{1-\kappa }}{1-\kappa }\), where \(\kappa \) is the coefficient of relative risk aversion, Eq. (2) becomes:

    $$\begin{aligned} -(y^{\prime }(T)+\rho )u^{\prime }(c(T;\rho )) = \int \limits _{{\underline{Q}}}^{{\overline{Q}}}z^{-\kappa }h(q,T)dq \end{aligned}$$
    (A.4)

    Using the implicit functions theorem, the sign of \(\dfrac{dT^{*}}{d\kappa }\) is given by the sign of \(-\frac{V^{\prime \prime }_{T\kappa }}{V^{\prime \prime }_{TT}}\). We can calculate the following derivative:

    $$\begin{aligned} V^{\prime \prime }_{T\kappa }(T,\rho )=-\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\ln (z)\times z^{-\kappa }h(q,T)dq<0 \end{aligned}$$
    (A.5)

    Thus, \(T^{*}\) is a decreasing function of \(\kappa \) when \({\overline{Q}}\) is sufficiently high.

Impact of risk aversion on adaptation

  • If v(x) is a CARA utility function given by \(v(x)=-\frac{1}{\beta }\exp \left( -\beta x\right) \), where \(\beta \) is the coefficient of absolute risk aversion, Eq. (3) writes:

    $$\begin{aligned} T u^{\prime }(c(T,\rho ))= & {} T \varphi ^{\prime }(\cdot ) \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}\exp \left( -\beta z\right) \ell (q,T) dq \end{aligned}$$
    (A.6)

    Then, \(\frac{d \rho ^{*}}{d\beta }=-\frac{V^{\prime \prime }_{\rho \beta }}{V^{\prime \prime }_{\rho \rho }}\). Using Eq. (A.6), we can calculate the following derivatives:

    $$\begin{aligned} V^{\prime \prime }_{\rho \beta }(T,\rho )=\varphi ^{\prime }(\cdot ) \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}z\exp \left( -\beta z\right) \ell (q,T) dq > 0 \end{aligned}$$
    (A.7)

    and

    $$\begin{aligned}&V^{\prime \prime }_{\rho \rho }(T,\rho )\nonumber \\&\quad =T^2\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\left[ \varphi ^{\prime \prime }(\cdot ) \exp (-\beta z)-(\varphi ^{\prime }(\cdot ))^{2}\beta \exp (-\beta x)\right] \ell (q,T) dq<0. \end{aligned}$$
    (A.8)

    To conclude, we can easily state that \(\frac{d\rho ^{*}}{d\beta }>0\) and thus, \((1-\rho ^{*})\) is a decreasing function of \(\beta \).

  • If v is a CRRA utility function given by \(v(x)=\frac{x^{1-\kappa }}{1-\kappa }\), where \(\kappa \) the coefficient of relative risk aversion, Eq. (3) becomes:

    $$\begin{aligned} T u^{\prime }(c(T,\rho ))=T \varphi ^{\prime }(\cdot ) \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}z^{-\kappa } \ell (q,T) dq \end{aligned}$$
    (A.9)

    The sign of \(\dfrac{d\rho ^{*}}{d\kappa }\) is given by the sign of \(-\frac{V^{\prime \prime }_{\rho \kappa }}{V^{\prime \prime }_{\rho \rho }}\). We can calculate the following derivative:

    $$\begin{aligned} V^{\prime \prime }_{\rho \kappa }(T,\rho )=\varphi ^{\prime }(\cdot ) \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}ln(z)z^{-\kappa } \ell (q,T)dq > 0 \end{aligned}$$
    (A.10)

    and Thus, \((1-\rho ^{*})\) is a decreasing function of \(\gamma \).

1.2 B Proof of Proposition 2

Impact of ambiguity aversion on mitigation To measure the impact of ambiguity aversion on the optimal policy and using the implicit function theorem, \(\dfrac{dT^{*}}{d\alpha }=-\frac{V^{\prime \prime }_{T\alpha }(T,\rho )}{V^{\prime \prime }_{TT}(T,\rho )}\). Through Assumption 2, integration by parts yields:

$$\begin{aligned} V^{\prime \prime }_{T\alpha } (T,\rho )= & {} -(1-\rho )\varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}v^{\prime \prime }(z)\left[ F_{\underline{\theta }}(q,T)-F_{{\overline{\theta }}}(q,T)\right] dq\nonumber \\&-\int \limits _{{\underline{Q}}}^{{\overline{Q}}}v^{\prime }(z) \left[ \frac{\partial F_{{\underline{\theta }}}(q,T)}{\partial T}-\frac{\partial F_{{\overline{\theta }}}(q,T)}{\partial T}\right] dq >0 \end{aligned}$$
(B.11)

Since \(V^{\prime \prime }_{TT}(T,\rho )<0\), we can conclude that \(\frac{dT^{*}}{d\alpha }>0\).

Impact of ambiguity aversion on adaptation

$$\begin{aligned} V^{\prime \prime }_{\rho \alpha }(T, \rho ) = T \varphi ^{\prime }(\cdot ) \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}v^{\prime \prime }(z)\left( F_{\underline{\theta }}(q,T)-F_{{\overline{\theta }}}(q,T)\right) dq <0 \end{aligned}$$
(B.12)

The sign of \(\frac{d\rho ^{*}}{d\alpha }\) is given by the sign of \(-\frac{V^{\prime \prime }_{\rho \alpha }(T,\rho )}{V^{\prime \prime }_{\rho \rho }(T,\rho )}\). Since \(V^{\prime \prime }_{\rho \rho }(T,\rho )<0\), we can conclude that \(\frac{d\rho ^{*}}{d\alpha }<0\) and consequently the adaptation level, \((1-\rho ^{*})\), is an increasing function of \(\alpha \).

1.3 C Proof of Proposition 3

Impact of a new scenario on mitigation Let us consider a new scenario \({\hat{\theta }}\), associated with a new welfare function denoted \({\hat{V}}(T,\rho )\) and a subsequent “new” optimal tax \({\hat{T}}=\arg \max \limits _{T} {\hat{V}}(T,\rho )\). Two configurations might occur:

  • When \({\hat{\theta }}\) is worst than all the initial scenarios, then \(F_{{\underline{\theta }}}(q,T)\le F_{{\hat{\theta }}}(q,T)\). We can state that \({\hat{T}}>T^{*}\Leftrightarrow \frac{\partial V({\hat{T}},\rho )}{\partial T}\ < 0\) which is equivalent to \({\hat{T}}>T^{*}\Leftrightarrow \frac{\partial V({\hat{T}},\rho )}{\partial T}\ <\frac{\partial \hat{V}({\hat{T}},\rho )}{\partial T}\) and to \({\hat{T}}>T^{*}\Leftrightarrow \frac{\partial V({\hat{T}},\rho )}{\partial T}\ - \frac{\partial \hat{V}({\hat{T}},\rho )}{\partial T} < 0\). After some computations, this inequality is satisfied if

    $$\begin{aligned}&-\alpha (1-\rho )\varphi ^{\prime }(\cdot )\left[ \int \limits _{ {\underline{Q}}}^{{\overline{Q}}}v^{\prime \prime }(z) \left( F_{{\underline{\theta }}}(q,T)-F_{{\hat{\theta }}}(q,T)\right) dq\right] \\&\quad -\alpha \int \limits _{{\underline{Q}}}^{{\overline{Q}}}v^{\prime }(z) \left( \frac{\partial F_{{\underline{\theta }} }(q,T)}{\partial T}-\frac{\partial F_{{\hat{\theta }}}(q,T)}{\partial T}\right) dq<0 \end{aligned}$$

    Through Assumption 2, this inequality is always verified for \(\alpha >0\), meaning that \({\hat{T}}>T^{*}\).

  • When \({\hat{\theta }}\) is better than the existing ones, then \(F_{{\hat{\theta }}}(q,T)\le F_{{\overline{\theta }}}(q,T)\). As previously, \({\hat{T}}>T^{*}\Leftrightarrow \frac{\partial V({\hat{T}},\rho )}{\partial T}\ <\frac{\partial \hat{V}({\hat{T}},\rho )}{\partial T}\). A similar reasoning allows us to state that such an inequality is never satisfied for \(\alpha <1\), meaning that \({\hat{T}}<T^{*}\).

Impact of a new scenario on adaptation Let us consider a new scenario \({\hat{\theta }}\), associated with a new welfare function denoted \({\hat{V}}(T,\rho )\) and a subsequent “new” optimal tax \({\hat{\rho }}=\arg \max \limits _{\rho } {\hat{V}}(T,\rho )\). Two configurations might occur:

  1. 1.

    When \({\hat{\theta }}\) is worst than all the initial scenarios then \(F_{{\underline{\theta }}}(q,T)\le F_{{\hat{\theta }}}(q,T)\). We can state that \({\hat{\rho }}< \rho ^{*}\Leftrightarrow \frac{\partial V(T,{\hat{\rho }})}{\partial \rho }\ > 0\) which is equivalent to \(\frac{\partial V(T,{\hat{\rho }})}{\partial \rho }\ >\frac{\partial {\hat{V}}(T,{\hat{\rho }})}{\partial \rho }\). Consequently, to prove that \({\hat{\rho }}< \rho ^{*}\), it is enough to prove that \(\frac{\partial V(T,\rho )}{\partial \rho }\ >\frac{\partial {\hat{V}}(T,\rho )}{\partial \rho }\). After some computations, this is satisfied if

    $$\begin{aligned}&\alpha T\varphi ^{\prime }(\cdot )\left[ \int \limits _{ {\underline{Q}}}^{{\overline{Q}}}v^{\prime \prime }(x) \left( F_{{\underline{\theta }}}(q,T)-F_{{\hat{\theta }}}(q,T)\right) dq\right] \ge 0\,\,\text {for}\,\, \alpha \ge 0 \end{aligned}$$
    (C.13)

    The above inequality is always verified, and thus adaptation strictly increases when bad news arrives, when the DM is not strictly optimistic. For an optimistic DM, a bad news does not influence adaptation.

  2. 2.

    When \({\hat{\theta }}\) is better than the existing ones, then \(F_{{\hat{\theta }}}(q,T)\le F_{{\overline{\theta }}}(q,T)\). A similar reasoning allows us to show that \({\hat{\rho }}> \rho ^{*}\) for \(\alpha <1\) and \({\hat{\rho }}= \rho ^{*}\) for \(\alpha =1\).

1.4 D Proof of Proposition 4

Impact of two new scenarios on mitigation Let us consider two additional scenarios \({\tilde{\theta }}\), being worst than all the others and \({\widehat{\theta }}\), being better than all the existing ones. Let us now denote by \(\breve{T}\), the optimal tax in this case, that is when the DM maximizes the following welfare function:

$$\begin{aligned} \breve{V}(T,\rho)&= u(c(T,\rho ))+\alpha _{DM} \int \limits _{{\underline{Q}}}^{{\overline{Q}}}v(z)f_{\widehat{\theta }}(q,T)dq\nonumber \\& \quad +(1-\alpha _{DM})\int \limits _{{\underline{Q}}}^{{\overline{Q}}}v(z) f_{{\tilde{\theta }}}(q,T)dq. \end{aligned}$$
(D.14)

Then, \(\breve{T}>T^{*}\Leftrightarrow \frac{\partial V(T^{*},\rho )}{\partial T} <\frac{\partial \breve{V}(T^{*},\rho )}{\partial T}\). This inequality is satisfied iff

$$\begin{aligned}&-(1-\rho )\varphi ^{\prime }(\cdot )\left[ \int \limits _{ {\underline{Q}}}^{{\overline{Q}}}v^{\prime \prime }(z) \left[ \alpha _{DM} \left( F_{{\underline{\theta }}}(q,T^{*})-F_{{\tilde{\theta }}}(q,T^{*})\right) \right. \right. \\&\quad \left. \left. +(1-\alpha _{DM})\left( F_{{\overline{\theta }}}(q,T^{*})-F_{{\widehat{\theta }}}(q,T^{*})\right) \right] dq\right] \\&\quad -\int \limits _{{\underline{Q}}}^{{\overline{Q}}}v^{\prime }(z)\left[ \alpha _{DM} \left( \frac{\partial F_{{\underline{\theta }} }(q,T^{*})}{\partial T}-\frac{\partial F_{{\tilde{\theta }} }(q,T^{*})}{\partial T}\right) \right. \\&\quad \left. +(1-\alpha _{DM})\left( \frac{\partial F_{{\overline{\theta }} }(q,T^{*})}{\partial T}-\frac{\partial F_{{\widehat{\theta }}}(q,T^{*})}{\partial T}\right) \right] dq<0 \end{aligned}$$

which is equivalent to

$$\begin{aligned}&\alpha _{DM} > \alpha _T(T^{*}) \\&\quad \equiv \frac{-(1-\rho )\varphi ^{\prime }(\cdot )\int v^{\prime \prime }(z) \left( F_{{\overline{\theta }}}-F_{{\widehat{\theta }}}\right) dq+\int v^{\prime }(z)\left( \frac{\partial F_{{\overline{\theta }} }}{\partial T}-\frac{\partial F_{{\widehat{\theta }}}}{\partial T}\right) dq}{-(1-\rho )\varphi ^{\prime }(\cdot )\int v^{\prime \prime }(z) \left( F_{\overline{\theta }}-F_{{\widehat{\theta }}}+F_{{\tilde{\theta }}}-F_{\underline{\theta }}\right) dq+\int v^{\prime }(z)\left( \frac{\partial F_{{\widehat{\theta }}}}{\partial T}-\frac{\partial F_{{\overline{\theta }} }}{\partial T}+\frac{\partial F_{{\underline{\theta }} }}{\partial T}-\frac{\partial F_{{\tilde{\theta }} }}{\partial T}\right) dq}. \end{aligned}$$

Impact of two new scenario on adaptation We denote by \((1-\breve{\rho })T\), the optimal adaptation level in this case. Using Eq. (D.14), we can show that \(\breve{\rho }<\rho ^{*}\Leftrightarrow \frac{\partial V(T,\rho )}{\partial \rho } > \frac{\partial \breve{V}(T,\rho )}{\partial \rho }\). This inequality is satisfied iff

$$\begin{aligned}&\alpha _{DM} \varphi ^{\prime }(\cdot )\left[ \int \limits _{ {\underline{Q}}}^{{\overline{Q}}}v^{\prime }(z) \left( f_{{\underline{\theta }}}(q,T)-f_{{\tilde{\theta }}}(q,T)\right) dq\right] \\&\quad +(1-\alpha _{DM}) \varphi ^{\prime }(\cdot )\left[ \int \limits _{ {\underline{Q}}}^{{\overline{Q}}}v^{\prime }(z) \left( f_{{\overline{\theta }}}(q,T)-f_{{\hat{\theta }}}(q,T)\right) dq\right] < 0 \end{aligned}$$

which is equivalent to

$$\begin{aligned} \alpha _{DM} > \alpha _\rho (\rho ^{*}) \equiv \dfrac{\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\left[ F_{{\tilde{\theta }}}(q,T)-F_{{\overline{\theta }}}(q,T) \right] v^{''}(z)dq }{\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\left[ F_{{\tilde{\theta }}}(q,T)-F_{{\overline{\theta }}}(q,T)+ F_{{\underline{\theta }}}(q,T)- F_{{\hat{\theta }}}(q,T)\right] v^{''}(z)dq } \end{aligned}$$

which proves the result.

1.5 E Proof of Lemma 1

To demonstrate that \(T^{*}\) and \(\rho ^{*}\) are complements at the optimum, let us differentiate equation (3) with respect to T:

$$\begin{aligned} V^{\prime \prime }_{\rho T}(T,\rho )= & {} 1-\varphi ^{\prime \prime }(\cdot )(1-\rho )T\int \limits _{{\underline{Q}}}^{{\overline{Q}}}v^{\prime }(z)\ell (q)dq\nonumber -\varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}v^{\prime } (z)\ell (q)dq\\&-(\varphi ^{\prime }(\cdot ))^2T (1-\rho )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}v^{\prime \prime } (z)\ell (q)dq\nonumber \\&-\varphi ^{\prime }(\cdot )T\int \limits _{{\underline{Q}}}^{{\overline{Q}}}v^{\prime } (z)\left[ \alpha \frac{\partial f_{{\overline{\theta }}}(q,T)}{\partial T}+(1-\alpha )\frac{\partial f_{{\underline{\theta }}}(q,T)}{\partial T}\right] dq \end{aligned}$$

Using Eq. (3) and integrating by part the last member of the right-hand side of equation (E.15), we deduce that:

$$\begin{aligned} V^{\prime \prime }_{\rho T}(T,\rho )=-\frac{(1-\rho )T\varphi ^{\prime \prime }(\cdot )}{\varphi ^{\prime }(\cdot )}-\varphi ^{\prime }(\cdot )T\int \limits _{{\underline{Q}}}^{{\overline{Q}}}v^{\prime \prime } (z)h(q,T)dq>0. \end{aligned}$$

Thus, \(T^{*}\) and \(\rho ^{*}\) are complements at the optimum.

1.6 F Proof of Proposition 5

1.6.1 F.1 Effect of Risk aversion

CARA utility function

$$\begin{aligned}V^{\prime \prime }_{\rho T}(T,\rho )& = -T\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\varphi ^{\prime }(\cdot )\beta \exp (-\beta z)L_T(q,T)dq\nonumber \\&\quad -T(1-\rho )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\left[ \varphi ^{\prime \prime }(\cdot ) -\varphi ^{\prime 2}(\cdot )\beta \right] \exp (-\beta z)\ell (q,T) dq>0. \end{aligned}$$
(F.15)

Since v(x) is a CARA utility function, where \(\beta \) is the coefficient of absolute risk aversion, total effects of risk aversion on the optimal climate policy design are given by

$$\begin{aligned} \frac{dT^*}{d\beta }=\frac{V^{\prime \prime }_{\rho T}V^{\prime \prime }_{\rho \beta }-V^{\prime \prime }_{T\beta }V^{\prime \prime }_{\rho \rho }}{ \Delta } \text { and } \frac{d\rho ^*}{d\beta }=\frac{V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\beta }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \beta }}{\Delta } \end{aligned}$$

where \(\Delta =V^{\prime \prime }_{TT} V^{\prime \prime }_{\rho \rho }-(V^{\prime \prime }_{\rho ,T})^2\) is assumed to be strictly positive. The sign of \(\frac{dT^*}{d\beta }\) is given by the sign of \(V^{\prime \prime }_{\rho T}V^{\prime \prime }_{\rho \beta }-V^{\prime \prime }_{T\beta }V^{\prime \prime }_{\rho \rho }\).

After some computations, we obtain:

$$\begin{aligned}&V^{\prime \prime }_{\rho T}V^{\prime \prime }_{\rho \beta }-V^{\prime \prime }_{T\beta }V^{\prime \prime }_{\rho \rho }=T^2\left[ -\beta \varphi ^{\prime 2}(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z \exp (-\beta z)\ell (q,T) dq \int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp (-\beta z)L_T(q,T) dq\right. \\&\quad \left. -\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z \exp (-\beta z)L_T(q,Y)dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}} \left[ \varphi ^{\prime \prime }(\cdot ) \exp (-\beta z)-\varphi ^{\prime 2}(\cdot )\beta \exp (-\beta z)\right] \ell (q,T) \right] . \end{aligned}$$

At the optimum, \(\frac{dT^*}{d\beta }<0\) if:

$$\begin{aligned}&H(\beta )\equiv \beta \varphi ^{\prime 2}(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z \exp (-\beta z)\ell (q,T) dq \int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp (-\beta z)L_T(q,T) dq\\&\quad +\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z \exp (-\beta z)L_T(q,T)dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}} \left[ \varphi ^{\prime \prime }(\cdot ) \exp (-\beta z)-\varphi ^{\prime 2}(\cdot )\beta \exp (-\beta z)\right] \ell (q,T)>0\\&\quad \Leftrightarrow \beta \varphi ^{\prime 2}(\cdot )(y^{\prime }(T)+1)\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z \exp (-\beta z)\ell (q,T) dq\\&\quad +\left( \frac{\varphi ^{\prime \prime }(\cdot )-\varphi ^{\prime 2}(\cdot )\beta }{\varphi ^{\prime }(\cdot )}\right) \int \limits _{{\underline{Q}}}^{{\overline{Q}}}z \exp (-\beta z)L_T(q,T)dq>0. \end{aligned}$$

We can show that \(H(0) > 0\) and \(\lim \limits _{\beta \rightarrow +\infty }H(\beta )=0\). Consequently, and because H is continuous, there exists at least one value for \(\beta \), \({\overline{\beta }}>0\), sufficiently small, such that for all \(\beta \in ]0,{\overline{\beta }}]\), \(H(\beta )> 0\) and thus \(\frac{dT}{d\beta }<0\).

Similarly, since \(\Delta >0\), \(\text {sign}\frac{d\rho }{d\beta }=\text {sign}\left( V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\beta }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \beta }\right) \). We can write:

$$\begin{aligned}&V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\beta }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \beta }\\&\quad =\beta T \varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp (-\beta z)L_T(q,T) dq\left[ \varphi ^{\prime }(\cdot ) (1-\rho )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)\ell (q,T) dq\right. \\&\qquad \left. -\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)L_T(q,T) dq\right] -Ty^{\prime \prime }(T)\varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)\ell (q,T) dq\\&\qquad + T \varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp (-\beta z)L_{TT}(q,T) dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)\ell (q,T) dq\\&\qquad -T(1-\rho )\left( \varphi ^{\prime \prime }(\cdot )-\beta \varphi ^{\prime 2}(\cdot )\right) \int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp (-\beta z)\ell (q,T) dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)L_T(q,T) dq. \end{aligned}$$

At the equilibrium, we can rewrite this last expression as the following:

$$\begin{aligned}&V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\beta }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \beta }=-\beta T \varphi ^{\prime 2}(\cdot )(1-\rho )\left[ y^\prime (T)+1\right] \int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)\ell (q,T) dq\\&\quad -\beta T \varphi ^{\prime }(\cdot )\left[ y^\prime (T)+1\right] \int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)L_T(q,T) dq-Ty^{\prime \prime }(T)\varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)\ell (q,T) dq\\&\quad + T \varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp (-\beta z)L_{TT}(q,T) dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)\ell (q,T) dq\\&\quad -T(1-\rho )\frac{\varphi ^{\prime \prime }(\cdot )-\beta \varphi ^{\prime 2}(\cdot )}{\varphi ^{\prime }(\cdot )}\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)L_T(q,T) dq. \end{aligned}$$

We can express:

$$\begin{aligned} V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\beta }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \beta }=-T\left[ (1-\rho )H(\beta )+ \varphi ^{\prime }(\cdot )J(\beta )\right] \end{aligned}$$
(F.16)

with \(J(\beta )\equiv \int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\exp (-\beta z)\left[ \beta (y^\prime (T)+1)L_T(q,T)+\left( y^{\prime \prime }(T)- \int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp (-\beta z)L_{TT}(q,T) dq\right) \ell (q,T) \right] dq\).

We can show that \(J(0) < 0\) and \(\lim \limits _{\beta \rightarrow +\infty }J(\beta )=0\). Consequently, and because J is continuous, there exists at least one value for \(\beta \), \(\overline{{\overline{\beta }}}>0\), sufficiently small, such that for all \(\beta \in ]0,\overline{{\overline{\beta }}}]\), \(J(\beta )< 0\).

\((1-\rho )H(0)+ \varphi ^{\prime }(\cdot )J(0)\) is positive when

$$\begin{aligned}&(1-\rho )\left( -\frac{\varphi ^{\prime \prime }(\cdot )}{\varphi ^{\prime }(\cdot )}\right) \int \limits _{{\underline{Q}}}^{{\overline{Q}}}z(-L_T(q,T)) dq>\left[ -y^{\prime \prime }(T)+\int \limits _{{\underline{Q}}}^{{\overline{Q}}}L_{TT}(q,T) dq\right] \int \limits _{{\underline{Q}}}^{{\overline{Q}}}z\ell (q,T) dq \end{aligned}$$

which is satisfied when \(-\frac{\varphi ^{\prime \prime }(\cdot )}{\varphi ^{\prime }(\cdot )}\) is sufficiently high.

Consequently, as \(-T\left[ (1-\rho )H(0)+ \varphi ^{\prime }(\cdot )J(0)\right] >0\) and \(\lim \limits _{\beta \rightarrow +\infty }\left[ (1-\rho )H(\beta )+ \varphi ^{\prime }(\cdot )J(\beta )\right] =0\), and since \(-T\left[ (1-\rho )H(\beta )+ \varphi ^{\prime }(\cdot )J(\beta )\right] \) is continuous, there exists at least one value for \(\beta \), \(\breve{\beta }>0\), sufficiently small, such that for all \(\beta \in ]0,\breve{\beta }]\), \(-T\left[ (1-\rho )H(\beta )+ \varphi ^{\prime }(\cdot )J(\beta )\right] < 0\) that is \(\frac{d\rho ^*}{d\beta }<0.\)

CRRA utility function

$$\begin{aligned}&V^{\prime \prime }_{\rho T}(T,\rho )=-T\kappa \int \limits _{{\underline{Q}}}^{{\overline{Q}}}\varphi ^{\prime }(\cdot ) z^{-\kappa -1}L_T(q,T)dq\nonumber \\&\quad -T(1-\rho )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\left[ \varphi ^{\prime \prime }(\cdot )z -\varphi ^{\prime 2}(\cdot )\kappa \right] z^{-\kappa -1}\ell (q,T) dq>0. \end{aligned}$$
(F.17)

Since v(x) is a CRRA utility function, where \(\kappa \) is the coefficient of relative risk aversion, total effects of risk aversion on the optimal climate policy design are given by

$$\begin{aligned} \frac{dT^*}{d\kappa }=\frac{V^{\prime \prime }_{\rho T}V^{\prime \prime }_{\rho \kappa }-V^{\prime \prime }_{T\kappa }V^{\prime \prime }_{\rho \rho }}{ \Delta } \text { and } \frac{d\rho ^*}{d\kappa }=\frac{V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\kappa }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \kappa }}{\Delta }. \end{aligned}$$

The sign of \(\frac{dT^*}{d\kappa }\) is given by the sign of \(K(\kappa ) \equiv V^{\prime \prime }_{\rho T}V^{\prime \prime }_{\rho \kappa }-V^{\prime \prime }_{T\kappa }V^{\prime \prime }_{\rho \rho }\) which is equal after some computations to the following expression:

$$\begin{aligned} K(\kappa )= & {} T^2\left[ -\kappa \varphi ^{\prime 2}(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\ln {z}\times z^{-\kappa } \ell (q,T) dq \int \limits _{{\underline{Q}}}^{{\overline{Q}}}z^{-\kappa -1}L_T(q,T) dq\right. \\&\left. +\frac{\kappa }{1-\kappa }(y^{\prime }(T)+1)\varphi ^{\prime 2}\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z^{-\kappa -1} \ell (q,T) dq \right. \\&\quad \left. -\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\ln {z}\times z^{-\kappa }L_T(q,T)dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}} \left[ \varphi ^{\prime \prime }(\cdot )z-\varphi ^{\prime 2}(\cdot )\kappa \right] z^{-\kappa - 1}\ell (q,T) \right] . \end{aligned}$$

We can show that \(K(0) < 0\) and \(\lim \limits _{\kappa \rightarrow +\infty }K(\kappa )=0\). Consequently, and because K is continuous, there exists at least one value for \(\kappa \), \({\overline{\kappa }}>0\), sufficiently small, such that for all \(\kappa \in ]0,{\overline{\kappa }}]\), \(K(\kappa )< 0\) and thus \(\frac{dT}{d\kappa }<0\).

Similarly, \(\text {sign}\frac{d\rho }{d\kappa }=\text {sign}\left( V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\kappa }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \kappa }\right) \). At the optimum, we can write:

$$\begin{aligned}&V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\kappa }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \kappa }=-T(1-\rho )\frac{\varphi ^{\prime \prime }(\cdot )}{\varphi ^{\prime }(\cdot )}\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\ln {z}\times z^{-\kappa }L_T(q,T) dq\\&\quad -\kappa T(1-\rho )\varphi ^{\prime 2}(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\ln {z}\times z^{-\kappa }\ell (q,T) dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z^{-\kappa -1}L_T(q,T) dq\\&\quad +\kappa T \varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\ln {z}\times z^{-\kappa }L_T(q) dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}} z^{-\kappa -1}\left( (1-\rho )\varphi ^{\prime }\ell (q,T)-L_T(q,T)\right) dq\\&\quad -Ty^{\prime \prime }(T)\varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\ln {z}\times z^{-\kappa }\ell (q,T) dq + T \varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z^{-\kappa }L_{TT}(q) dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\ln {z}\times z^{-\kappa }\ell (q,T) dq\\&\quad +2\frac{\kappa }{1-\kappa }T\varphi ^{\prime }(\cdot )(y^{\prime }(T)+1)\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z^{-\kappa -1}\left( (1-\rho )\varphi ^{\prime }(\cdot )\ell (q,T)-L_T(q,T)\right) dq. \end{aligned}$$

Let us denote by \(M(\kappa )\) this last expression, we can show that M(0) is negative when

$$\begin{aligned}&-(1-\rho )\frac{\varphi ^{\prime \prime }(\cdot )}{\varphi ^{\prime }(\cdot )}\left( -2(y^{\prime }(T)+1)-\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\ln {z}L_T(q,T) dq\right) \\&\quad -\varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\ln {z}\ell (q,T) dq \left( y^{\prime \prime }(T)-\int \limits _{{\underline{Q}}}^{{\overline{Q}}}L_{TT}(q,T) dq\right) \end{aligned}$$

is negative. That is satisfied when \(-\frac{\varphi ^{\prime \prime }(\cdot )}{\varphi ^{\prime }(\cdot )}\) is sufficiently high.

Consequently, as \(\lim \limits _{\kappa \rightarrow +\infty }M(\kappa )=0\), and since \(M(\kappa )\) is continuous, there exists at least one value for \(\kappa \), \(\breve{\kappa }>0\), sufficiently small, such that for all \(\kappa \in ]0,\breve{\kappa }]\), \(\frac{d\rho ^*}{d\kappa }<0.\)

1.6.2 F.2 Effects of Ambiguity Aversion

The total effects of a change in ambiguity aversion on the optimal design of the climate policy are given by:

$$\begin{aligned} \frac{dT^*}{d\alpha }=\frac{V^{\prime \prime }_{\rho T}V^{\prime \prime }_{\rho \alpha }-V^{\prime \prime }_{T\alpha }V^{\prime \prime }_{\rho \rho }}{ \Delta } \text { and } \frac{d\rho ^*}{d\alpha }=\frac{V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\alpha }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \alpha }}{\Delta } \end{aligned}$$

Since \(\Delta >0\), we have that \(\text {sign}\frac{dT^*}{d\alpha }=\text {sign} V^{\prime \prime }_{\rho T}V^{\prime \prime }_{\rho \alpha }-V^{\prime \prime }_{T\alpha }V^{\prime \prime }_{\rho \rho }\) and \(\text {sign}\frac{d\rho ^*}{d\alpha }=\text {sign} V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\alpha }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \alpha }\).

CARA utility function

If v(x) is a CARA function so that \(v(x)=-\frac{1}{\beta }exp(-\beta x)\), at the optimum, we first deduce that:

$$\begin{aligned}&V^{\prime \prime }_{\rho T}V^{\prime \prime }_{\rho \alpha }-V^{\prime \prime }_{T\alpha }V^{\prime \prime }_{\rho \rho }\\&\quad =T^{2}\left\{ (\varphi ^{\prime }(\cdot ))^{2}\beta ^{2}(y^{\prime }+1)\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp (-\beta x)(F_{{\underline{\theta }}}(q,T)-F_{\overline{\theta }}(q,T))dq\right\} \\&\qquad +T^{2}\left\{ \left( \frac{\varphi ^{\prime \prime }(\cdot )-(\varphi ^{\prime }(\cdot ))^{2}\beta }{\varphi ^{\prime }(\cdot )}\right) \int \limits _{{\underline{Q}}}^{{\overline{Q}}} \exp (-\beta x)\left( \frac{\partial F_{\underline{\theta }}(q,T)}{\partial T}-\frac{\partial F_{\overline{\theta }}(q,T)}{\partial T}\right) dq\right\} \end{aligned}$$

At the optimum, \(\frac{dT^*}{d\alpha }>0\) if \(G(\beta )>0\) with:

$$\begin{aligned}&G(\beta )=(\varphi ^{\prime }(\cdot ))^{2}\beta ^{2}(y^{\prime }+1)\int \limits _{{\underline{Q}}}^{{\overline{Q}}}\exp (-\beta z)(F_{{\underline{\theta }}}(q,T)-F_{{\overline{\theta }}}(q,T))dq \nonumber \\&\quad +\left( \frac{\varphi ^{\prime \prime }(\cdot )-(\varphi ^{\prime }(\cdot ))^{2}\beta }{\varphi ^{\prime }(\cdot )}\right) \int \limits _{{\underline{Q}}}^{{\overline{Q}}} \exp (-\beta z)\left( \frac{\partial F_{\underline{\theta }}(q,T)}{\partial T}-\frac{\partial F_{\overline{\theta }}(q,T)}{\partial T}\right) dq \end{aligned}$$
(F.18)

We can easily see that \(G(0)>0\) and \(\lim \limits _{\beta \rightarrow +\infty }G(\beta )=0\). Consequently, and because G is continuous, there exists at least one value for \(\beta \), \({\hat{\beta }}>0\), sufficiently small, such that for all \(\beta \in ]0,{\hat{\beta }}]\), \(G(\beta )> 0\) and thus \(\frac{dT^*}{d\alpha }>0\).

Now, let us turn to \(\frac{d\rho ^*}{d\alpha }\), we obtain that:

$$\begin{aligned}&V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\alpha }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \alpha }\nonumber \\&\quad =T(1-\rho )\left( \frac{\varphi ^{\prime \prime }(\cdot )-(\varphi ^{\prime }(\cdot ))^{2}\beta }{\varphi ^{\prime }(\cdot )}\right) \int \limits _{{\underline{Q}}}^{{\overline{Q}}} \exp (-\beta z)\left( \frac{\partial F_{\underline{\theta }}(q,T)}{\partial T}-\frac{\partial F_{\overline{\theta }}(q,T)}{\partial T}\right) dq\nonumber \\&\qquad +T\varphi ^{\prime }(\cdot )\beta (y^{\prime }+1)\int \limits _{{\underline{Q}}}^{{\overline{Q}}} \exp (-\beta z)\left( \frac{\partial F_{{\underline{\theta }}}(q,T)}{\partial T}-\frac{\partial F_{{\overline{\theta }}}(q,T)}{\partial T}\right) dq\nonumber \\&\qquad +\left[ T\varphi ^{\prime }(\cdot )\beta y^{\prime \prime }(T)+T(\varphi ^{\prime }(\cdot )^{2}\beta ^{2} (1-\rho ) (y^{\prime }+1)\right] \int \limits _{{\underline{Q}}}^{{\overline{Q}}} \exp (-\beta z)\left( F_{{\underline{\theta }}}(q,T)-F_{\overline{\theta }}(q,T)\right) dq \nonumber \\&\qquad -T\varphi ^{\prime }(\cdot )\beta \int \limits _{{\underline{Q}}}^{{\overline{Q}}} \exp (-\beta z)L_{TT}(q,T)dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}} \exp (-\beta z)\left( F_{{\underline{\theta }}}(q,T)-F_{\overline{\theta }}(q,T)\right) dq \end{aligned}$$
(F.19)

We can state that \(\frac{d\rho ^*}{d\alpha }>0\) if \(J(\beta )>0\), with \(J(\beta )\equiv V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\alpha }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \alpha }\). We can easily see that \(J(0)>0\) and \(\lim \limits _{\beta \rightarrow +\infty }J(\beta )=0\). Consequently, and because J is continuous, there exists at least one value for \(\beta \), \({\tilde{\beta }}>0\), sufficiently small, such that for all \(\beta \in ]0,{\tilde{\beta }}]\), \(J(\beta )> 0\) and thus \(\frac{d\rho ^*}{d\alpha }>0\).

CRRA utility function

If v(x) is a CRRA function so that \(v(x)=\frac{x^{1-\kappa }}{1-\kappa }\), at the optimum, we first deduce that:

$$\begin{aligned} N(\kappa )\equiv & {} V^{\prime \prime }_{\rho T}V^{\prime \prime }_{\rho \alpha }-V^{\prime \prime }_{T\alpha }V^{\prime \prime }_{\rho \rho }=T^{2}(\varphi ^{\prime }(\cdot ))^{2}\kappa ^{2}\left\{ \int \limits _{{\underline{Q}}}^{{\overline{Q}}}z^{-\kappa -1}(F_{{\underline{\theta }}}(q,T)\right. \\&\quad \left. -F_{\overline{\theta }}(q,T))dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z^{-\kappa -1}L_T(q,T))dq\right. \\&\left. \int \limits _{{\underline{Q}}}^{{\overline{Q}}}z^{-\kappa }(F_{{\underline{\theta }}}(q,T)-F_{\overline{\theta }}(q,T))dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}}z^{-\kappa -1}\ell (q,T))dq\right\} \\&\quad +T^{2}\frac{\varphi ^{\prime \prime }(\cdot )}{\varphi ^{\prime }(\cdot )}\int \limits _{{\underline{Q}}}^{{\overline{Q}}} z^{-\kappa }\left( \frac{\partial F_{\underline{\theta }}(q,T)}{\partial T}-\frac{\partial F_{\overline{\theta }}(q,T)}{\partial T}\right) dq \end{aligned}$$

At the optimum, \(\frac{dT^*}{d\alpha }>0\) if \(N(\kappa )>0\). We can easily see that \(N(0)>0\) and \(\lim \limits _{\kappa \rightarrow +\infty }N(\kappa )=0\). Consequently, and because N is continuous, there exists at least one value for \(\kappa \), \({\hat{\kappa }}>0\), sufficiently small, such that for all \(\kappa \in ]0,{\hat{\kappa }}]\), \(N(\kappa )> 0\) and thus \(\frac{dT^*}{d\alpha }>0\).

Now, let us turn to \(\frac{d\rho ^*}{d\alpha }\), we obtain that:

$$\begin{aligned}&P(\kappa )\equiv V^{\prime \prime }_{\rho T}V^{\prime \prime }_{T\alpha }-V^{\prime \prime }_{TT}V^{\prime \prime }_{\rho \alpha }=T(1-\rho )\frac{\varphi ^{\prime \prime }(\cdot )}{\varphi ^{\prime }(\cdot )}\int \limits _{{\underline{Q}}}^{{\overline{Q}}} z^{-\kappa }\left( \frac{\partial F_{\underline{\theta }}(q,T)}{\partial T}-\frac{\partial F_{\overline{\theta }}(q,T)}{\partial T}\right) dq\nonumber \\&\quad +\kappa T\varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}} z^{-\kappa }\left( \frac{\partial F_{\underline{\theta }}(q,T)}{\partial T}-\frac{\partial F_{\overline{\theta }}(q,T)}{\partial T}\right) dq\int \limits _{{\underline{Q}}}^{{\overline{Q}}} z^{-\kappa -1}\left( L_T(q,T)\right. \nonumber \\&\quad \left. -(1-\rho )\varphi ^{\prime }(\cdot )\ell (q,T)\right) dq\nonumber \\&\quad +\kappa T\varphi ^{\prime }(\cdot )\int \limits _{{\underline{Q}}}^{{\overline{Q}}} z^{-\kappa -1}\left( \frac{\partial F_{\underline{\theta }}(q,T)}{\partial T}-\frac{\partial F_{\overline{\theta }}(q,T)}{\partial T}\right) dq\nonumber \\&\quad \left[ y^{\prime \prime }(T)-\int \limits _{{\underline{Q}}}^{{\overline{Q}}} z^{-\kappa }L_{TT}(q,T)dq\right] \end{aligned}$$
(F.20)

We can state that \(\frac{d\rho ^*}{d\alpha }>0\) if \(P(\kappa )>0\). We can easily see that \(P(0)>0\) and \(\lim \limits _{\kappa \rightarrow +\infty }P(\kappa )=0\). Consequently, and because P is continuous, there exists at least one value for \(\kappa \), \({\tilde{\kappa }}>0\), sufficiently small, such that for all \(\kappa \in ]0,{\tilde{\kappa }}]\), \(P(\kappa )> 0\) and thus \(\frac{d\rho ^*}{d\alpha }>0\).

1.7 G Proof of Lemma 2

Let us prove that if an equilibrium \((T^{*}_h,T^{*}_{-h})\) exists, it may stable. For each country, the FOC writes:

$$\begin{aligned}&V_{T_h}^h\equiv V_{T_h}(T_h,T_{-h},\rho _h,\alpha _h)=\left( y^{\prime }(T_h)+\rho _h \right) u^{\prime }(c(T_h,\rho _h))\nonumber \\&\quad +(1-\rho _h )\varphi _h ^{\prime }(\cdot )\left[ \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}v^{\prime }( q+\varphi _h(\cdot )) \left( \alpha _h f_{{\underline{\theta }}}(q,T_h+T_{-h})+(1-\alpha _h )f_{{\overline{\theta }}}(q,T_h+T_{-h})\right) dq\right] \nonumber \\&\quad +\int \limits _{{\underline{Q}}}^{{\overline{Q}}}v(q+\varphi _h(\cdot )) \left( \alpha _h \frac{\partial f_{\underline{\theta }}(q,T_h+T_{-h})}{\partial T_h}+(1-\alpha _h )\frac{\partial f_{{\overline{\theta }}}(q,T_h+T_{-h})}{\partial T_h}\right) dq \end{aligned}$$
(G.21)

with \(\varphi _h(\cdot )=\varphi ((1-\rho _h)T_h)\).

From the FOC (G.21), and using the implicit function theorem, we obtain two best-response functions that correspond to the strategy adopted by the DM: \(T_h=R_{h}(T_{-h})\). Furthermore, we can deduce the slope of each function \(R_{h}\):

$$\begin{aligned} R^{\prime }_{h}(T_{-h})=-\frac{V^{h}_{T_{h}T_{-h}}}{V^{h}_{T_{h}T_{h}}} \end{aligned}$$
(G.22)

We can calculate the two second-order derivatives:

$$\begin{aligned}&V_{T_hT_h}^h = y^{\prime \prime }(T_h) u^{\prime }(c(T_h,\rho _h))+\left( y^{\prime }(T_h)+\rho _h \right) ^2 u^{\prime \prime }(c(T_h,\rho _h))\nonumber \\&\quad -2(1-\rho _h )\varphi _h ^{\prime 2 }(\cdot )\nonumber \\&\quad \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}v^{\prime \prime }( q+\varphi _h(\cdot )) L_T^h(q,T)dq+(1-\rho _h )^2\varphi _h ^{\prime \prime }(\cdot ) \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}v^{\prime }( q+\varphi _h(\cdot )) \ell ^h(q,T)dq\nonumber \\&\quad -\varphi _h ^{\prime }(\cdot ) \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}v^{\prime }( q+\varphi _h(\cdot )) L_{TT}^h(q,T)dq + 2(1-\rho _h )^2\varphi _h ^{\prime 2 }(\cdot )\nonumber \\&\quad \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}v^{\prime \prime }( q+\varphi _h(\cdot )) \ell ^h(q,T)dq<0 \end{aligned}$$
(G.23)
$$\begin{aligned}&V_{T_hT_{-h}}^h =- \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}v^{\prime }( q+\varphi _h(\cdot )) L_{TT}^h(q,T)dq -(1-\rho _h )\varphi _h ^{\prime }(\cdot )\nonumber \\&\quad \int \limits _{{\underline{Q}}}^{ {\overline{Q}}}v^{\prime \prime }( q+\varphi _h(\cdot )) L_T^h(q,T)dq<0 \end{aligned}$$
(G.24)

with \(L^h_T(q,T)= \alpha _h \frac{\partial F_{\underline{\theta }}(q,T_h+T_{-h})}{\partial T_h}+(1-\alpha _h ) \frac{\partial F_{{\overline{\theta }}}(q,T_h+T_{-h})}{\partial T_h} \) and \(L^h_{TT}(q,T)= \alpha _h \frac{\partial ^2 F_{\underline{\theta }}(q,T_h+T_{-h})}{\partial T_h^2}+(1-\alpha _h ) \frac{\partial ^2 F_{{\overline{\theta }}}(q,T_h+T_{-h})}{\partial T_h^2} \).

An equilibrium \(T^{*}\) exists and is a pair \((T^{*}_{h},T^{*}_{-h})\) if there exists a value of \(T^{*}_{h}\) such that \(R_{h}^{-1}(T^{*}_{h})=R_{-h}(T^{*}_{h})\).

Let us now consider that such an equilibrium exists, then it is stable if the following condition is satisfied:

$$\begin{aligned} \left| R_{h}^{-1\prime }(T^{*}_{h})\right|>\left| R_{-h}^{\prime }(T^{*}_{h})\right| \,\, \Leftrightarrow \,\, V^{-h}_{T_{-h}T_{-h}}V^{h}_{T_{h}T_{h}}>V^{-h}_{T_{-h}T_{h}}V^{h}_{T_{h}T_{-h}} \end{aligned}$$
(G.25)

1.8 H Proof of Proposition 6

To evaluate the impact of ambiguity aversion of the DM on the level of the optimal carbon tax in country h, we differentiate equation (4) with respect to \(\alpha _h\). Total effect of ambiguity aversion is given by:

$$\begin{aligned} \frac{dT_h}{d\alpha _h}=\frac{V^{h}_{T_{h}\alpha _{h}}V^{-h}_{T_{-h}T_{-h}}}{V^{h}_{T_{h}T_{-h}}V^{-h}_{T_{-h}T_{h}}-V^{h}_{T_{h}T_{h}}V^{-h}_{T_{-h}T_{-h}}} \end{aligned}$$
(H.26)

Using Eqs. (G.23) and (B.11), we know that the numerator is negative. Overall, we state that \(\frac{dT_h}{d\alpha _h}>0\) if \(V^{h}_{T_{h}T_{-h}}V^{-h}_{T_{-h}T_{h}}-V^{h}_{T_{h}T_{h}}V^{-h}_{T_{-h}T_{-h}}<0\) which is true under condition (G.25).

We can also assess the effect of ambiguity aversion, \(\alpha _{-h}\), of the other DM on the optimal carbon tax in the country h. Total effects of ambiguity aversion are given by:

$$\begin{aligned} \frac{dT_h}{d\alpha _{-h}}=\frac{-V^{h}_{T_{h}T_{-h}}V^{-h}_{T_{-h}\alpha _{-h}}}{V^{-h}_{T_{h}T_{-h}}V^{h}_{T_{h}T_{-h}}-V^{-h}_{T_{-h}T_{-h}}V^{h}_{T_{h}T_{h}}} \end{aligned}$$
(H.27)

Using Eqs. (B.11) and (G.24), the numerator is positive. Since \(V^{h}_{T_{h}T_{-h}}V^{-h}_{T_{-h}T_{h}}-V^{h}_{T_{h}T_{h}}V^{-h}_{T_{-h}T_{-h}}<0\) under condition (G.25), we obtain that \(\frac{dT_h}{d\alpha _{-h}}<0\).

Let us now turn to the effect of ambiguity aversion of \(\hbox {DM}_h\) on the global mitigation, \(T_{h}+T_{-h}\). We have to study the sign of the following expression:

$$\begin{aligned} \frac{dT_h}{d\alpha _h}+\frac{dT_{-h}}{d\alpha _{h}}=\frac{V^{h}_{T_{h}\alpha _{h}}\left( V^{-h}_{T_{-h}T_{-h}}-V^{-h}_{T_{-h}T_{h}}\right) }{V^{h}_{T_{-h}T_{h}}V^{-h}_{T_{-h}T_{h}}-V^{h}_{T_{h}T_{h}}V^{-h}_{T_{-h}T_{-h}}} \end{aligned}$$
(H.28)

The denominator is negative under condition (G.25), and we know that \(V^{h}_{T_{h}\alpha _{h}}>0\). Thus, \(\frac{dT_h}{d\alpha _h}+\frac{dT_{-h}}{d\alpha _{h}}>0 \Leftrightarrow V^{\prime \prime }_{-h,T_{-h}T_{-h}}<V^{\prime \prime }_{-h,T_{-h}T_{h}}<0\) which is true if \(\varphi ^\prime (\cdot )\) is sufficiently large.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etner, J., Jeleva, M. & Raffin, N. Climate policy: How to deal with ambiguity?. Econ Theory 72, 263–301 (2021). https://doi.org/10.1007/s00199-020-01284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00199-020-01284-y

Keywords

JEL Classification

Navigation