Skip to main content

Advertisement

Log in

Effect of recreational cannabis use on bone mineral density: a systematic review

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

The recreational use of cannabis products has risen considerably worldwide over the past decade. As the cannabis legal market grows, a critical challenge has been to make substantiated claims about the benefits and adverse health problems triggered by cannabis exposure. Despite accumulating evidence from animal studies demonstrating the role of cannabinoids on bone metabolism, there are conflicting results in clinical literature regarding their effects on bone health outcomes.

We undertook a systematic review to assess the evidence for the safety of cannabis use on bone health. We searched the databases MEDLINE, EMBASE, Cochrane Library, and Web of Science up to March 2023 for studies evaluating the effect of the recreational use of cannabis on the bone mineral density (BMD) of adults.

Among the 2620 studies reviewed, three cross-sectional studies and one randomized controlled trial comprised 4032 participants from 18 to 60 years who met the inclusion criteria. Two studies showed that cannabis exposure decreased BMD, while the other 2 indicated no alteration. Despite the different study designs, the included studies showed a low risk of bias according to the Joanna Briggs Institute tool.

Eligible studies present differences in cannabis products, administration routes, and exposure determination. Further longitudinal research is needed to establish multiple clinical predictors associated with potentially negative consequences of cannabis exposure, especially in vulnerable populations such as elderly individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data used in this study are available upon request.

References 

  1. Ferland J-MN, Hurd YL (2020) Deconstructing the neurobiology of cannabis use disorder. Nat Neurosci 23:600–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Connor JP, Stjepanović D, Le Foll B et al (2021) Cannabis use and cannabis use disorder. Nat Rev Dis Primers 7:16

    Article  PubMed  PubMed Central  Google Scholar 

  3. United Nations (2023) Office on drugs and crime. World drug report. www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2023.html

  4. Hall W, Leung J, Lynskey M (2020) The effects of cannabis use on the development of adolescents and young adults. Annu Rev Dev Psychol 2:461–483

    Article  Google Scholar 

  5. Gruber SA, Dahlgren MK, Sagar KA et al (2012) Age of onset of marijuana use impacts inhibitory processing. Neurosci Lett 511:89–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meier MH, Caspi A, Ambler A et al (2012) Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci 109:E2657–E2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zalesky A, Solowij N, Yücel M et al (2012) Effect of long-term cannabis use on axonal fibre connectivity. Brain 135:2245–2255

    Article  PubMed  Google Scholar 

  8. Di Forti M, Quattrone D, Freeman TP et al (2019) The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): a multicentre case-control study. Lancet Psychiatry 6:427–436

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lev-Ran S, Roerecke M, Le Foll B et al (2014) The association between cannabis use and depression: a systematic review and meta-analysis of longitudinal studies. Psychol Med 44:797–810

    Article  CAS  PubMed  Google Scholar 

  10. Feingold D, Weiser M, Rehm J, Lev-Ran S (2015) The association between cannabis use and mood disorders: a longitudinal study. J Affect Disord 172:211–218

    Article  PubMed  Google Scholar 

  11. Han B, Compton WM, Einstein EB, Volkow ND (2021) Associations of suicidality trends with cannabis use as a function of sex and depression status. JAMA Netw Open 4:e2113025–e2113025

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chami T, Kim CH (2019) Cannabis abuse and elevated risk of myocardial infarction in the young: a population-based study. In: Mayo clinic proceedings. Elsevier, 1647–1649

  13. Braymiller JL, Barrington-Trimis JL, Leventhal AM et al (2020) Assessment of nicotine and cannabis vaping and respiratory symptoms in young adults. JAMA Netw Open 3:e2030189–e2030189

    Article  PubMed  PubMed Central  Google Scholar 

  14. Patel RS, Manocha P, Patel J et al (2020) Cannabis use is an independent predictor for acute myocardial infarction related hospitalization in younger population. J Adolesc Health 66:79–85

    Article  PubMed  Google Scholar 

  15. Richards JR, Blohm E, Toles KA et al (2020) The association of cannabis use and cardiac dysrhythmias: a systematic review. Clin Toxicol 58:861–869

    Article  Google Scholar 

  16. Cota D, Marsicano G, Lutz B et al (2003) Endogenous cannabinoid system as a modulator of food intake. Int J Obes 27:289–301

    Article  CAS  Google Scholar 

  17. Rodondi N, Pletcher MJ, Liu K et al (2006) Marijuana use, diet, body mass index, and cardiovascular risk factors (from the CARDIA study). Am J Cardiol 98:478–484

    Article  PubMed  Google Scholar 

  18. DiPatrizio NV, Astarita G, Schwartz G et al (2011) Endocannabinoid signal in the gut controls dietary fat intake. Proc Natl Acad Sci 108:12904–12908

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Bab I, Zimmer A (2008) Cannabinoid receptors and the regulation of bone mass. Br J Pharmacol 153:182–188

    Article  CAS  PubMed  Google Scholar 

  20. Tam J, Ofek O, Fride E et al (2006) Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol Pharmacol 70:786–792

    Article  CAS  PubMed  Google Scholar 

  21. Ofek O, Karsak M, Leclerc N et al (2006) Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci 103:696–701

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Idris AI, van’t Hof RJ, Greig IR et al (2005) Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 11:774–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sophocleous A, Marino S, Kabir D et al (2017) Combined deficiency of the Cnr1 and Cnr2 receptors protects against age-related bone loss by osteoclast inhibition. Aging Cell 16:1051–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Idris AI, Sophocleous A, Landao-Bassonga E et al (2008) Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology 149:5619–5626

    Article  CAS  PubMed  Google Scholar 

  25. da Nogueira-Filho GR, Cadide T, Rosa BT et al (2008) Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats. Implant Dent 17:461–470

    Article  PubMed  Google Scholar 

  26. Samir SM, Malek HA (2014) Effect of cannabinoid receptors 1 modulation on osteoporosis in a rat model of different ages. J Physiol Pharmacol 65:687–694

    CAS  PubMed  Google Scholar 

  27. Kogan NM, Melamed E, Wasserman E et al (2015) Cannabidiol, a major non-psychotropic cannabis constituent enhances fracture healing and stimulates lysyl hydroxylase activity in osteoblasts. J Bone Miner Res 30:1905–1913

    Article  CAS  PubMed  Google Scholar 

  28. Kamali A, Oryan A, Hosseini S et al (2019) Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng, C 101:64–75

    Article  CAS  Google Scholar 

  29. Idris AI, Sophocleous A, Landao-Bassonga E et al (2009) Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab 10:139–147

    Article  CAS  PubMed  Google Scholar 

  30. Sophocleous A, Sims AH, Idris AI, Ralston SH (2014) Modulation of strain-specific differences in gene expression by cannabinoid type 2 receptor deficiency. Calcif Tissue Int 94:423–432

    Article  CAS  PubMed  Google Scholar 

  31. Kanis JA, Cooper C, Rizzoli R et al (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44

    Article  CAS  PubMed  Google Scholar 

  32. Karsak M, Malkin I, Toliat MR et al (2009) The cannabinoid receptor type 2 (CNR2) gene is associated with hand bone strength phenotypes in an ethnically homogeneous family sample. Hum Genet 126:629–636

    Article  CAS  PubMed  Google Scholar 

  33. Karsak M, Cohen-Solal M, Freudenberg J et al (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14:3389–3396

    Article  CAS  PubMed  Google Scholar 

  34. Zhang C, Ma J, Chen G et al (2015) Evaluation of common variants in CNR2 gene for bone mineral density and osteoporosis susceptibility in postmenopausal women of Han Chinese. Osteoporos Int 26:2803–2810

    Article  CAS  PubMed  Google Scholar 

  35. Higgins JPT, Thomas J, Chandler J et al (2019) Cochrane handbook for systematic reviews of interventions. Wiley

    Book  Google Scholar 

  36. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5:1–10

    Article  Google Scholar 

  38. Joanna Briggs Institute (2017) Checklist for systematic reviews and research syntheses. In: https://jbi.global/critical-appraisal-tools

  39. Guyatt G, Oxman AD, Akl EA et al (2011) GRADE guidelines: 1. Introduction - GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64:383–394. https://doi.org/10.1016/j.jclinepi.2010.04.026

    Article  PubMed  Google Scholar 

  40. Barreiro MA, Rosado LM, Peniche DB, García ME (2017) Efecto de los estilos de vida en jóvenes universitarios Mexicanos sobre la densidad mineral ósea. Rev esp nutr comunitaria 23(1)

  41. Bourne D, Plinke W, Hooker ER, Nielson CM (2017) Cannabis use and bone mineral density: NHANES 2007–2010. Arch Osteoporos 12:1–6

    Article  Google Scholar 

  42. Sophocleous A, Robertson R, Ferreira NB et al (2017) Heavy cannabis use is associated with low bone mineral density and an increased risk of fractures. Am J Med 130:214–221

    Article  CAS  PubMed  Google Scholar 

  43. Lopez HL, Cesareo KR, Raub B et al (2020) Effects of hemp extract on markers of wellness, stress resilience, recovery and clinical biomarkers of safety in overweight, but otherwise healthy subjects. J Diet Suppl 17:561–586

    Article  CAS  PubMed  Google Scholar 

  44. Shen Y, Huang X, Wu J, et al (2022) The global burden of osteoporosis, low bone mass, and its related fracture in 204 countries and territories, 1990–2019. Front Endocrinol (Lausanne) 13 https://doi.org/10.3389/fendo.2022.882241

  45. Xiao P-L, Cui A-Y, Hsu C-J et al (2022) Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: a systematic review and meta-analysis. Osteoporos Int 33:2137–2153. https://doi.org/10.1007/s00198-022-06454-3

    Article  PubMed  Google Scholar 

  46. Sophocleous A, Yiallourides M, Zeng F et al (2022) Association of cannabinoid receptor modulation with normal and abnormal skeletal remodelling: a systematic review and meta-analysis of in vitro, in vivo and human studies. Pharmacol Res 175:105928. https://doi.org/10.1016/j.phrs.2021.105928

    Article  CAS  PubMed  Google Scholar 

  47. Ofek O, Attar-Namdar M, Kram V et al (2011) CB2 cannabinoid receptor targets mitogenic Gi protein-cyclin D1 axis in osteoblasts. J Bone Miner Res 26:308–316. https://doi.org/10.1002/jbmr.228

    Article  CAS  PubMed  Google Scholar 

  48. Rossi F, Bellini G, Tortora C et al (2015) CB2 and TRPV1 receptors oppositely modulate in vitro human osteoblast activity. Pharmacol Res 99:194–201. https://doi.org/10.1016/j.phrs.2015.06.010

    Article  CAS  PubMed  Google Scholar 

  49. Li D, Lin Z, Meng Q et al (2017) Cannabidiol administration reduces sublesional cancellous bone loss in rats with severe spinal cord injury. Eur J Pharmacol 809:13–19. https://doi.org/10.1016/j.ejphar.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  50. Smoum R, Baraghithy S, Chourasia M et al (2015) CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: an inverse relationship between binding affinity and biological potency. Proc Natl Acad Sci 112:8774–8779. https://doi.org/10.1073/pnas.1503395112

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Sophocleous A, Börjesson AE, Salter DM, Ralston SH (2015) The type 2 cannabinoid receptor regulates susceptibility to osteoarthritis in mice. Osteoarthritis Cartilage 23:1586–1594. https://doi.org/10.1016/J.JOCA.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  52. Whyte LS, Ryberg E, Sims NA et al (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci U S A 106:16511–16516. https://doi.org/10.1073/PNAS.0902743106/SUPPL_FILE/0902743106SI.PDF

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Ryberg E, Larsson N, Sjögren S et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101. https://doi.org/10.1038/SJ.BJP.0707460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lauckner JE, Jensen JB, Chen HY et al (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105:2699–2704. https://doi.org/10.1073/PNAS.0711278105/SUPPL_FILE/11278FIG6.JPG

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Duane B, Zeng J, Williams SM et al (2014) Further evidence that periodontal bone loss increases with smoking and age. Evid Based Dent 15:72–73. https://doi.org/10.1038/SJ.EBD.6401038

    Article  PubMed  Google Scholar 

  56. Heath D, Ghali A, Momtaz D et al (2022) Marijuana use results in increased time to union in surgically treated pediatric fracture patients. J Orthop Trauma 36:e106–e110. https://doi.org/10.1097/BOT.0000000000002242

    Article  PubMed  Google Scholar 

  57. Tao X, Matur A V., Khalid S, et al (2023) Cannabis use is associated with higher rates of pseudarthrosis following TLIF. Spine (Phila Pa 1976) https://doi.org/10.1097/BRS.0000000000004768

  58. Ehrenkranz J, Levine MA (2019) Bones and joints: the effects of cannabinoids on the skeleton. J Clin Endocrinol Metab 104:4683–4694

    Article  PubMed  Google Scholar 

  59. Farokhnia M, McDiarmid GR, Newmeyer MN, et al (2020) Effects of oral, smoked, and vaporized cannabis on endocrine pathways related to appetite and metabolism: a randomized, double-blind, placebo-controlled, human laboratory study. Transl Psychiatry 2020 10:1 10:1–11 https://doi.org/10.1038/s41398-020-0756-3

  60. Ohlsson A, Lindgren J-E, Andersson S et al (1986) Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration. Biomed Environ Mass Spectrom 13:77–83. https://doi.org/10.1002/BMS.1200130206

    Article  CAS  PubMed  Google Scholar 

  61. Grotenhermen F (2003) Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet 42:327–360. https://doi.org/10.2165/00003088-200342040-00003

    Article  CAS  PubMed  Google Scholar 

  62. Secades-Villa R, Garcia-Rodríguez O, Jin CJ et al (2015) Probability and predictors of the cannabis gateway effect: a national study. Int J Drug Policy 26:135–142

    Article  PubMed  Google Scholar 

  63. Hindley G, Beck K, Borgan F et al (2020) Psychiatric symptoms caused by cannabis constituents: a systematic review and meta-analysis. Lancet Psychiatry 7:344–353

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fontanella CA, Steelesmith DL, Brock G et al (2021) Association of cannabis use with self-harm and mortality risk among youths with mood disorders. JAMA Pediatr 175:377–384

    Article  PubMed  Google Scholar 

  65. Vozoris NT, Zhu J, Ryan CM et al (2022) Cannabis use and risks of respiratory and all-cause morbidity and mortality: a population-based, data-linkage, cohort study. BMJ Open Respir Res 9:e001216

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yamada Y, Ando F, Shimokata H (2007) Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int J Mol Med. https://doi.org/10.3892/ijmm.19.5.791

    Article  PubMed  Google Scholar 

  67. Wang C, Zhang Z, Zhang H et al (2012) Susceptibility genes for osteoporotic fracture in postmenopausal Chinese women. J Bone Miner Res 27:2582–2591. https://doi.org/10.1002/jbmr.1711

    Article  CAS  PubMed  Google Scholar 

  68. Woo JH, Kim H, Kim JH, Kim JG (2015) Cannabinoid receptor gene polymorphisms and bone mineral density in Korean postmenopausal women. Menopause 22:512–519. https://doi.org/10.1097/GME.0000000000000339

    Article  PubMed  Google Scholar 

  69. ElSohly MA, Chandra S, Radwan M et al (2021) A comprehensive review of cannabis potency in the United States in the last decade. Biol Psychiatry Cogn Neurosci Neuroimaging 6:603–606. https://doi.org/10.1016/j.bpsc.2020.12.016

    Article  PubMed  Google Scholar 

  70. Le A, Han BH, Palamar JJ (2022) Underreporting of past-year cannabis use on a national survey by people who smoke blunts. Subst Abus 43:349–355. https://doi.org/10.1080/08897077.2021.1941520

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

CAPES for making available the web site www.periodicos.capes.gov.br

Funding

This study was supported by grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 for LAVM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalia Sernizon Guimarães.

Ethics declarations

Competing interests

Luiz Alexandre Viana Magno, Lucas Ferreira Alves, Diego Tameirão and Nathalia Sernizon Guimarães declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Diego Ribeiro Taimerao died before publication of this work was completed.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (DOCX 86 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magno, L.A.V., Tameirão, D.R., Alves, L.F. et al. Effect of recreational cannabis use on bone mineral density: a systematic review. Osteoporos Int 35, 391–399 (2024). https://doi.org/10.1007/s00198-023-06992-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-023-06992-4

Keywords

Navigation