Skip to main content

Advertisement

Log in

Effect of SGLT2 inhibitors on fractures, BMD, and bone metabolism markers in patients with type 2 diabetes mellitus: a systematic review and meta-analysis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

This meta-analysis aims to evaluate the impact of Sodium Glucose Transporter 2 (SGLT2) inhibitors on fractures, bone mineral density (BMD), and bone metabolism markers in type 2 diabetes mellitus (T2DM) patients. Pooled relative risk (RR) with 95% confidence interval (CI) assessed the relationship between SGLT2 inhibitors and fracture risk. Weighted mean difference (WMD) with 95% CI explored the correlation between SGLT2 inhibitors and BMD, as well as bone metabolism markers. A total of 20 randomised controlled trials (RCTs) involving 12,764 patients were analysed. No significant association emerged between SGLT2 inhibitor use and elevated fracture risk (pooled RR = 1.21, 95% CI [0.95, 1.54], I2 = 22%). Furthermore, SGLT2 inhibitors exhibited no substantial effects on BMD changes at the lumbar spine (WMD = -0.02, 95% CI [-0.38, 0.34]), femoral neck (WMD = 0.11, 95% CI [-0.28, 0.50]), total hip (WMD = -0.20, 95% CI [-0.41, 0.01]), and distal forearm (WMD = -0.20, 95% CI [-0.62, 0.22]). Similarly, no notable impact of SGLT2 inhibitors on bone metabolism markers, including CTX (WMD = 0.04, 95% CI [-0.02, 0.09]), P1NP (WMD = 1.06, 95% CI [-0.44, 2.57]), PTH (WMD = 0.34, 95% CI [-0.07, 0.75]), calcium (WMD = 0.01, 95% CI [-0.02, 0.04]), and phosphate (WMD = 2.37, 95% CI [-0.76, 5.49]). The findings suggest that the utilization of SGLT2 inhibitors is not significantly linked to an elevated risk of fractures in individuals with T2DM. However, further clinical investigations and extended follow-up periods are warranted to establish more conclusive determinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author (WWB), upon reasonable request.

References

  1. Sun H, Saeedi P, Karuranga S et al (2022) IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119

    Article  PubMed  Google Scholar 

  2. Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14:88–98

    Article  PubMed  Google Scholar 

  3. Padhi S, Nayak AK, Behera A (2020) Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed Pharmacother 131:110708

    Article  CAS  PubMed  Google Scholar 

  4. Scheen AJ (2020) Sodium-glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 16:556–577

    Article  PubMed  Google Scholar 

  5. Wu VC, Li YR, Wang CY (2021) Impact of sodium-glucose co-transporter 2 inhibitors on cardiac protection. Int J Mol Sci 22:7170

  6. Lin DS, Lee JK, Chen WJ (2021) Clinical Adverse Events Associated with Sodium-Glucose Cotransporter 2 Inhibitors: A Meta-Analysis Involving 10 Randomized Clinical Trials and 71 553 Individuals. J Clin Endocrinol Metab 106:2133–2145

    Article  PubMed  Google Scholar 

  7. Ye Y, Zhao C, Liang J, Yang Y, Yu M, Qu X (2018) Effect of Sodium-Glucose Co-transporter 2 Inhibitors on Bone Metabolism and Fracture Risk. Front Pharmacol 9:1517

    Article  CAS  PubMed  Google Scholar 

  8. Adler CP (1989) Pathologic bone fractures: definition and classification. Langenbecks Arch Chir Suppl II Verh Dtsch Ges Chir 479–486

  9. Watts NB, Bilezikian JP, Usiskin K, Edwards R, Desai M, Law G, Meininger G (2016) Effects of Canagliflozin on Fracture Risk in Patients With Type 2 Diabetes Mellitus. J Clin Endocrinol Metab 101:157–166

    Article  CAS  PubMed  Google Scholar 

  10. Azharuddin M, Adil M, Ghosh P, Sharma M (2018) Sodium-glucose cotransporter 2 inhibitors and fracture risk in patients with type 2 diabetes mellitus: A systematic literature review and Bayesian network meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 146:180–190

    Article  CAS  PubMed  Google Scholar 

  11. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Med 3:e123-130

    PubMed  PubMed Central  Google Scholar 

  12. Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC. Chapter 8: Assessing risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook. Accessed February 15, 2023.

  13. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang HL, Li DD, Zhang JJ, Hsu YH, Wang TS, Zhai SD, Song YQ (2016) Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab 18:1199–1206

    Article  CAS  PubMed  Google Scholar 

  15. Ljunggren Ö, Bolinder J, Johansson L, Wilding J, Langkilde AM, Sjöström CD, Sugg J, Parikh S (2012) Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab 14:990–999

    Article  CAS  PubMed  Google Scholar 

  16. Bolinder J, Ljunggren Ö, Johansson L, Wilding J, Langkilde AM, Sjöström CD, Sugg J, Parikh S (2014) Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 16:159–169

    Article  CAS  PubMed  Google Scholar 

  17. Kohan DE, Fioretto P, Tang W, List JF (2014) Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 85:962–971

    Article  CAS  PubMed  Google Scholar 

  18. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, Broedl UC (2014) Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2:369–384

    Article  CAS  PubMed  Google Scholar 

  19. Kaku K, Kiyosue A, Inoue S, Ueda N, Tokudome T, Yang J, Langkilde AM (2014) Efficacy and safety of dapagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise. Diabetes Obes Metab 16:1102–1110

    Article  CAS  PubMed  Google Scholar 

  20. Leiter LA, Cefalu WT, De Bruin TWA, Gause-Nilsson I, Sugg J, Parikh SJ (2014) Dapagliflozin added to usual care in individuals with type 2 diabetes mellitus with preexisting cardiovascular disease: A 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. J Am Geriatr Soc 62:1252–1262

    Article  PubMed  Google Scholar 

  21. Yale JF, Bakris G, Cariou B et al (2014) Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes Metab 16:1016–1027

    Article  CAS  PubMed  Google Scholar 

  22. Bode B, Stenlöf K, Harris S, Sullivan D, Fung A, Usiskin K, Meininger G (2015) Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55–80 years with type 2 diabetes. Diabetes Obes Metab 17:294–303

    Article  CAS  PubMed  Google Scholar 

  23. Yang W, Han P, Min KW, Wang B, Mansfield T, T’Joen C, Iqbal N, Johnsson E, Ptaszynska A (2016) Efficacy and safety of dapagliflozin in Asian patients with type 2 diabetes after metformin failure: A randomized controlled trial. J Diabetes 8:796–808

    Article  CAS  PubMed  Google Scholar 

  24. Bilezikian JP, Watts NB, Usiskin K, Polidori D, Fung A, Sullivan D, Rosenthal N (2016) Evaluation of Bone Mineral Density and Bone Biomarkers in Patients With Type 2 Diabetes Treated With Canagliflozin. J Clin Endocrinol Metab 101:44–51

    Article  CAS  PubMed  Google Scholar 

  25. Araki E, Onishi Y, Asano M, Kim H, Ekholm E, Johnsson E, Yajima T (2016) Efficacy and safety of dapagliflozin in addition to insulin therapy in Japanese patients with type 2 diabetes: Results of the interim analysis of 16-week double-blind treatment period. J Diabetes Inv 7:555–564

    Article  CAS  Google Scholar 

  26. Lu CH, Min KW, Chuang LM, Kokubo S, Yoshida S, Cha BS (2016) Efficacy, safety, and tolerability of ipragliflozin in Asian patients with type 2 diabetes mellitus and inadequate glycemic control with metformin: Results of a phase 3 randomized, placebo-controlled, double-blind, multicenter trial. J Diabetes Inv 7:366–373

    Article  CAS  Google Scholar 

  27. Rodbard HW, Seufert J, Aggarwal N, Cao A, Fung A, Pfeifer M, Alba M (2016) Efficacy and safety of titrated canagliflozin in patients with type 2 diabetes mellitus inadequately controlled on metformin and sitagliptin. Diabetes Obes Metab 18:812–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosenstock J, Frias J, Páll D et al (2018) Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab 20:520–529

    Article  CAS  PubMed  Google Scholar 

  29. Kadowaki T, Inagaki N, Kondo K, Nishimura K, Kaneko G, Maruyama N, Nakanishi N, Iijima H, Watanabe Y, Gouda M (2017) Efficacy and safety of canagliflozin as add-on therapy to teneligliptin in Japanese patients with type 2 diabetes mellitus: Results of a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 19:874–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaku K, Lee J, Mattheus M, Kaspers S, George J, Woerle HJ (2017) Empagliflozin and cardiovascular outcomes in Asian patients with type 2 diabetes and established cardiovascular disease — results from EMPA-REG OUTCOME® —. Circ J 81:227–234

    Article  CAS  PubMed  Google Scholar 

  31. Yale JF, Xie J, Sherman SE, Garceau C (2017) Canagliflozin in Conjunction With Sulfonylurea Maintains Glycemic Control and Weight Loss Over 52 Weeks: A Randomized, Controlled Trial in Patients With Type 2 Diabetes Mellitus. Clin Ther 39:2230-2242.e2232

    Article  CAS  PubMed  Google Scholar 

  32. Gallo S, Charbonnel B, Goldman A, Shi H, Huyck S, Darekar A, Lauring B, Terra SG (2019) Long-term efficacy and safety of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin monotherapy: 104-week VERTIS MET trial. Diabetes Obes Metab 21:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rau M, Thiele K, Hartmann NK, Möllmann J, Wied S, Hohl M, Marx N, Lehrke M (2022) Effects of empagliflozin on markers of calcium and phosphate homeostasis in patients with type 2 diabetes - Data from a randomized, placebo-controlled study. Bone Rep 16:101175

  34. Song L (2017) Calcium and Bone Metabolism Indices. Adv Clin Chem 82:1–46

    Article  CAS  PubMed  Google Scholar 

  35. Meier C, Schwartz AV, Egger A, Lecka-Czernik B (2016) Effects of diabetes drugs on the skeleton. Bone 82:93–100

    Article  CAS  PubMed  Google Scholar 

  36. Alba M, Xie J, Fung A, Desai M (2016) The effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on mineral metabolism and bone in patients with type 2 diabetes mellitus. Curr Med Res Opin 32:1375–1385

    Article  CAS  PubMed  Google Scholar 

  37. Blau JE, Taylor SI (2018) Adverse effects of SGLT2 inhibitors on bone health. Nat Rev Nephrol 14:473–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Taylor SI, Blau JE, Rother KI (2015) Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol 3:8–10

    Article  CAS  PubMed  Google Scholar 

  39. Civitelli R, Armamento-Villareal R, Napoli N (2009) Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos Int 20:843–851

    Article  CAS  PubMed  Google Scholar 

  40. Vasikaran S, Eastell R, Bruyère O et al (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420

    Article  CAS  PubMed  Google Scholar 

  41. Greenblatt MB, Tsai JN, Wein MN (2017) Bone Turnover Markers in the Diagnosis and Monitoring of Metabolic Bone Disease. Clin Chem 63:464–474

    Article  CAS  PubMed  Google Scholar 

  42. Vilaca T, Gossiel F, Eastell R (2017) Bone Turnover Markers: Use in Fracture Prediction. J Clin Densitom 20:346–352

    Article  PubMed  Google Scholar 

  43. Szulc P (2018) Bone turnover: Biology and assessment tools. Best Pract Res Clin Endocrinol Metab 32:725–738

    Article  PubMed  Google Scholar 

  44. Schini M, Vilaca T, Gossiel F, Salam S, Eastell R (2023) Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr Rev 44:417–473

    Article  PubMed  Google Scholar 

  45. Li X, Li T, Cheng Y, Lu Y, Xue M, Xu L, Liu X, Yu X, Sun B, Chen L (2019) Effects of SGLT2 inhibitors on fractures and bone mineral density in type 2 diabetes: An updated meta-analysis. Diabetes Metab Res Rev 35:e3170

    Article  PubMed  Google Scholar 

  46. De Laet C, Kanis JA, Odén A et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  47. Lee SW, Han K, Kwon HS (2023) Association of Body Mass Index and Fracture Risk Varied by Affected Bones in Patients with Diabetes: A Nationwide Cohort Study. Diabetes Metab J 47:242–254

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research design was carried out by WWB and LYJ. Literature retrieval and screening, data extraction, data analysis, statistical analysis, and written contributions were performed by WX, ZFY, ZYF, and ZJY. The manuscript was revised by WWB and SYL. All authors reviewed the manuscript, and all authors have read and approved the final version of the manuscript.

Funding

This research was funded by the Natural Science Foundation of Shandong Province (ZR2020MH361), the Shandong Provincial Traditional Chinese Medicine Science and Technology Project (2020M023), the Shandong Provincial Medical and Health Science and Technology Development Program Project (2019WS562), China Postdoctoral Science Foundation (2021M692750), and Special funding for Mount Tai Scholar Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Wang.

Ethics declarations

Ethics approval

All human and animal studies have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24.0 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, F., Zhang, Y. et al. Effect of SGLT2 inhibitors on fractures, BMD, and bone metabolism markers in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Osteoporos Int 34, 2013–2025 (2023). https://doi.org/10.1007/s00198-023-06908-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-023-06908-2

Keywords

Navigation