Skip to main content

Advertisement

Log in

Management of bone loss due to endocrine therapy during cancer treatment

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Bone modifying agents BMAs (oral and IV bisphosphonates, denosumab) are used to treat bone loss due to endocrine therapy in patients with hormone receptor positive (HR +) early breast cancer and non-metastatic prostate cancer (NMPC). Timely initiation of appropriate sequential therapy is imperative to reduce cancer treatment-induced bone loss (CTIBL). This narrative review summarizes current literature regarding management of CTIBL in HR + early breast cancer and NMPC patients. Risk factors for fragility fractures, screening strategies, optimal timing for the treatment, dosing/duration of therapy, and post treatment monitoring have not been clearly defined in HR + early breast and NMPC patients receiving endocrine therapy. This review aims to discuss the utility of fracture risk assessment (FRAX) tool for the prevention and management of CTIBL, osteoanabolic therapy for imminent fracture risk reduction, and sequential therapy options. Using predefined terms, PubMed, MEDLINE, and Google Scholar were searched for studies on CTIBL in HR + breast and NMPC patients. We included randomized clinical trials, meta-analysis, evidence-based reviews, observational studies, and clinical practice guidelines. Fracture risk assessment tools (FRAX) guide therapy for osteoporosis in patients with early HR + breast cancer and NMPC. BMAs to prevent bone loss should be initiated at higher T-score than recommended by FRAX in premenopausal HR + breast cancer patients with chemotherapy-induced ovarian failure, oophorectomy and gonadotropin releasing hormone (GnRH) therapy, post-menopausal women with HR + breast cancer receiving aromatase inhibitor therapy, and NMPC patients with androgen deprivation therapy. Sequential therapy with osteoanabolic agents as first line treatment offers a potential therapeutic strategy in patients with high imminent fracture risk. Due to limited data in cancer patients regarding management of osteoporosis, a dosing schedule similar to osteoporosis is considered appropriate. Risk stratification to identify vulnerable patient population, choosing the appropriate sequential therapy, and close monitoring of patients at the risk of bone loss can potentially reduce the mortality, morbidity, and health care cost related to CTIBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shapiro CL, Van Poznak C, Lacchetti C et al (2019) Management of osteoporosis in survivors of adult cancers with nonmetastatic disease: ASCO clinical practice guideline. J Clin Oncol 37:2916–2946

    Article  PubMed  Google Scholar 

  2. Reuss-Borst M, Hartmann U, Scheede C, Weiss J (2012) Prevalence of osteoporosis among cancer patients in Germany: prospective data from an oncological rehabilitation clinic. Osteoporos Int 23:1437–1444

    Article  CAS  PubMed  Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  4. Hyder T, Marino CC, Ahmad S, Nasrazadani A, Brufsky AM (2021) Aromatase inhibitor-associated musculoskeletal syndrome: understanding mechanisms and management. Front Endocrinol (Lausanne) 12:713700

    Article  PubMed  Google Scholar 

  5. Guise TA (2006) Bone loss and fracture risk associated with cancer therapy. Oncologist 11:1121–1131

    Article  CAS  PubMed  Google Scholar 

  6. Goss PE, Ingle JN, Pritchard KI et al (2016) Extending aromatase-inhibitor adjuvant therapy to 10 years. N Engl J Med 375:209–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ameb S, Salawu A, Brown JE (2019) Bone health in men with prostate cancer: review article. Curr Osteoporos Rep 17:527–537

    Article  Google Scholar 

  8. Shapiro CL, Manola J, Leboff M (2001) Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 19:3306–3311

    Article  CAS  PubMed  Google Scholar 

  9. Shapiro CL, Halabi S, Hars V et al (2011) Zoledronic acid preserves bone mineral density in premenopausal women who develop ovarian failure due to adjuvant chemotherapy: final results from CALGB trial 79809. Eur J Cancer 47:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu J, Shin Y, Yen MS, Sun SS (2016) Peak bone mass and patterns of change in total bone mineral density and bone mineral contents from childhood into young adulthood. J Clin Densitom 19:180–191

    Article  PubMed  Google Scholar 

  11. Briot K, Geusens P, Em Bultink I, Lems WF, Roux C (2017) Inflammatory diseases and bone fragility. Osteoporos Int 28:3301–3314

    Article  CAS  PubMed  Google Scholar 

  12. Castaneda S, Casas A, Gonzalez-Del-Alba A, Martinez-Diaz-Guerra G, Nogues X, Ojeda Thies C, Torregrosa Suau O, Rodriguez-Lescure A (2022) Bone loss induced by cancer treatments in breast and prostate cancer patients. Clin Transl Oncol 24:2090–2106

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chan HJ, Petrossian K, Chen S (2016) Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and -resistant breast cancer cells. J Steroid Biochem Mol Biol 161:73–83

    Article  CAS  PubMed  Google Scholar 

  14. Molehin D, Filleur S, Pruitt K (2021) Regulation of aromatase expression: Potential therapeutic insight into breast cancer treatment. Mol Cell Endocrinol 531:111321

    Article  CAS  PubMed  Google Scholar 

  15. Issa S, Schnabel D, Feix M, Wolf L, Schaefer HE, Russell DW, Schweikert HU (2002) Human osteoblast-like cells express predominantly steroid 5alpha-reductase type 1. J Clin Endocrinol Metab 87:5401–5407

    Article  CAS  PubMed  Google Scholar 

  16. Chen JF, Lin PW, Tsai YR, Yang YC, Kang HY (2019) Androgens and androgen receptor actions on bone health and disease: from androgen deficiency to androgen therapy. Cells 8(11):1318

  17. Manolagas SC, O’Brien CA, Almeida M (2013) The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol 9:699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bado I, Gugala Z, Fuqua SAW, Zhang XH (2017) Estrogen receptors in breast and bone: from virtue of remodeling to vileness of metastasis. Oncogene 36:4527–4537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Viswanathan M, Reddy S, Berkman N, Cullen K, Middleton JC, Nicholson WK, Kahwati LC (2018) Screening to prevent osteoporotic fractures: an evidence review for the US Preventive Services Task Force. Rockville (MD) Report No: 15-05226-EF-1

  20. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29:518–530

    Article  PubMed  Google Scholar 

  21. Cummings SR, San Martin J, McClung MR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765

    Article  CAS  PubMed  Google Scholar 

  22. Dimai HP, Fahrleitner-Pammer A (2022) Osteoporosis and fragility fractures: currently available pharmacological options and future directions. Best Pract Res Clin Rheumatol 36:101780

    Article  PubMed  Google Scholar 

  23. Black DM, Thompson DE, Bauer DC, Ensrud K, Musliner T, Hochberg MC, Nevitt MC, Suryawanshi S, Cummings SR, Fracture Intervention T (2000) Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab 85:4118–4124

    Article  CAS  PubMed  Google Scholar 

  24. Barrionuevo P, Kapoor E, Asi N et al (2019) Efficacy of pharmacological therapies for the prevention of fractures in postmenopausal women: a network meta-analysis. J Clin Endocrinol Metab 104:1623–1630

    Article  PubMed  Google Scholar 

  25. Black DM, Delmas PD, Eastell R et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  CAS  PubMed  Google Scholar 

  26. Drake MT, Clarke BL, Khosla S (2008) Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc 83:1032–1045

    Article  CAS  PubMed  Google Scholar 

  27. Malluche HH, Chen J, Lima F, Liu LJ, Monier-Faugere MC, Pienkowski D (2021) Bone quality and fractures in women with osteoporosis treated with bisphosphonates for 1 to 14 years. JBMR Plus 5:e10549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elbers LPB, Raterman HG, Lems WF (2021) Bone mineral density loss and fracture risk after discontinuation of anti-osteoporotic drug treatment: a narrative review. Drugs 81:1645–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang M, Wu YF, Girgis CM (2022) Bisphosphonate drug holidays: evidence from clinical trials and real-world studies. JBMR Plus 6:e10629

    Article  PubMed  PubMed Central  Google Scholar 

  30. Curtis EM, Reginster JY, Al-Daghri N et al (2022) Management of patients at very high risk of osteoporotic fractures through sequential treatments. Aging Clin Exp Res 34:695–714

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Miller PD, Yang YC, Grazette L, San Martin J, Gallagher JC (2011) Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab 96:972–980

    Article  CAS  PubMed  Google Scholar 

  32. Laura I, Felicia B, Alexia C, Aude M, Florence B, Murielle S, Rafik K, Jean-Jacques B, Pierre B (2021) Which treatment to prevent an imminent fracture? Bone Rep 15:101105

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tsourdi E, Zillikens MC, Meier C et al (2020) Fracture risk and management of discontinuation of denosumab therapy: a systematic review and position statement by ECTS. J Clin Endocrinol Metab 106(1):264–281

    Article  Google Scholar 

  34. Cosman F, Kendler DL, Langdahl BL et al (2022) Romosozumab and antiresorptive treatment: the importance of treatment sequence. Osteoporos Int 33:1243–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanis JA, Johansson H, Oden A et al (2018) Characteristics of recurrent fractures. Osteoporos Int 29:1747–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dos Santos FL, Abreu LG, Calderipe CB, Martins MD, Schuch LF, Vasconcelos ACU (2021) Is teriparatide therapy effective for medication-related osteonecrosis of the jaw? A systematic review and meta-analysis. Osteoporos Int 32:2449–2459

    Article  Google Scholar 

  37. van de Laarschot DM, McKenna MJ, Abrahamsen B, Langdahl B, Cohen-Solal M, Guanabens N, Eastell R, Ralston SH, Zillikens MC (2020) Medical management of patients after atypical femur fractures: a systematic review and recommendations from the European Calcified Tissue Society. J Clin Endocrinol Metab 105:1682–1699

    Article  PubMed  Google Scholar 

  38. Brown JP, Engelke K, Keaveny TM et al (2021) Romosozumab improves lumbar spine bone mass and bone strength parameters relative to alendronate in postmenopausal women: results from the Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial. J Bone Miner Res 36:2139–2152

    Article  CAS  PubMed  Google Scholar 

  39. Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543

    Article  CAS  PubMed  Google Scholar 

  40. Cosman F, Crittenden DB, Ferrari S, Khan A, Lane NE, Lippuner K, Matsumoto T, Milmont CE, Libanati C, Grauer A (2018) FRAME Study: the foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J Bone Miner Res 33:1219–1226

    Article  CAS  PubMed  Google Scholar 

  41. Lewiecki EM, Dinavahi RV, Lazaretti-Castro M, Ebeling PR, Adachi JD, Miyauchi A, Gielen E, Milmont CE, Libanati C, Grauer A (2019) One year of romosozumab followed by two years of denosumab maintains fracture risk reductions: results of the FRAME Extension Study. J Bone Miner Res 34:419–428

    Article  CAS  PubMed  Google Scholar 

  42. McClung MR, Bolognese MA, Brown JP, Reginster JY, Langdahl BL, Maddox J, Shi Y, Rojeski M, Meisner PD, Grauer A (2020) A single dose of zoledronate preserves bone mineral density for up to 2 years after a second course of romosozumab. Osteoporos Int 31:2231–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, Maddox J, Fan M, Meisner PD, Grauer A (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377:1417–1427

    Article  CAS  PubMed  Google Scholar 

  44. Kobayakawa T, Miyazaki A, Takahashi J, Nakamura Y (2022) Verification of efficacy and safety of ibandronate or denosumab for postmenopausal osteoporosis after 12-month treatment with romosozumab as sequential therapy: The prospective VICTOR study. Bone 162:116480

    Article  CAS  PubMed  Google Scholar 

  45. Diana A, Carlino F, Giunta EF, Franzese E, Guerrera LP, Di Lauro V, Ciardiello F, Daniele B, Orditura M (2021) Cancer treatment-induced bone loss (CTIBL): state of the art and proper management in breast cancer patients on endocrine therapy. Curr Treat Options Oncol 22:45

    Article  PubMed  PubMed Central  Google Scholar 

  46. Coleman R, Hadji P, Body JJ et al (2020) Bone health in cancer: ESMO Clinical Practice Guidelines. Ann Oncol 31:1650–1663

    Article  CAS  PubMed  Google Scholar 

  47. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S, Senkus E, clinicalguidelines@esmo.org EGCEa (2019) Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger. Ann Oncol 30:1194–1220

    Article  CAS  PubMed  Google Scholar 

  48. Lomax AJ, Yee Yap S, White K et al (2013) Prevention of aromatase inhibitor-induced bone loss with alendronate in postmenopausal women: the BATMAN Trial. J Bone Oncol 2:145–153

    Article  PubMed  PubMed Central  Google Scholar 

  49. Coleman R, de Boer R, Eidtmann H et al (2013) Zoledronic acid (zoledronate) for postmenopausal women with early breast cancer receiving adjuvant letrozole (ZO-FAST study): final 60-month results. Ann Oncol 24:398–405

    Article  CAS  PubMed  Google Scholar 

  50. Gnant M, Pfeiler G, Dubsky PC et al (2015) Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 386:433–443

    Article  CAS  PubMed  Google Scholar 

  51. Poon Y, Pechlivanoglou P, Alibhai SMH, Naimark D, Hoch JS, Papadimitropoulos E, Hogan ME, Krahn M (2018) Systematic review and network meta-analysis on the relative efficacy of osteoporotic medications: men with prostate cancer on continuous androgen-deprivation therapy to reduce risk of fragility fractures. BJU Int 121:17–28

    Article  PubMed  Google Scholar 

  52. Miyashita H, Satoi S, Cruz C, Kim SM, Patel VG (2022) Bone-modifying agents for bone loss in patients with prostate cancer receiving androgen deprivation therapy; insights from a network meta-analysis. Support Care Cancer 30:855–863

    Article  PubMed  Google Scholar 

  53. Smith MR, Saad F, Coleman R et al (2012) Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379:39–46

    Article  CAS  PubMed  Google Scholar 

  54. Smith MR, Egerdie B, Hernandez Toriz N et al (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361:745–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuo TR, Chen CH (2017) Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vasikaran S, Eastell R, Bruyere O et al (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420

    Article  CAS  PubMed  Google Scholar 

  57. Diez-Perez A, Naylor KE, Abrahamsen B et al (2017) International Osteoporosis Foundation and European Calcified Tissue Society Working Group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos Int 28:767–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eastell R, Black DM, Lui LY et al (2021) Treatment-related changes in bone turnover and fracture risk reduction in clinical trials of antiresorptive drugs: proportion of treatment effect explained. J Bone Miner Res 36:236–243

    Article  CAS  PubMed  Google Scholar 

  59. Rosen CJ, Hochberg MC, Bonnick SL et al (2005) Treatment with once-weekly alendronate 70 mg compared with once-weekly risedronate 35 mg in women with postmenopausal osteoporosis: a randomized double-blind study. J Bone Miner Res 20:141–151

    Article  CAS  PubMed  Google Scholar 

  60. Eastell R, Christiansen C, Grauer A et al (2011) Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J Bone Miner Res 26:530–537

    Article  CAS  PubMed  Google Scholar 

  61. Krege JH, Wan X, Lentle BC et al (2013) Fracture risk prediction: importance of age, BMD and spine fracture status. Bonekey Rep 2:404

    Article  PubMed  PubMed Central  Google Scholar 

  62. Barron RL, Oster G, Grauer A, Crittenden DB, Weycker D (2020) Determinants of imminent fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 31:2103–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ferrari S, Libanati C, Lin CJF et al (2019) Relationship between bone mineral density T-score and nonvertebral fracture risk over 10 years of denosumab treatment. J Bone Miner Res 34:1033–1040

    Article  CAS  PubMed  Google Scholar 

  64. Coleman R (2022) Bone-targeted agents and metastasis prevention. Cancers (Basel) 14(15):3640

  65. Ban J, Fock V, Aryee DNT, Kovar H (2021) Mechanisms, diagnosis and treatment of bone metastases. Cells 10(11):2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang X, Hamadeh IS, Song S, Katz J, Moreb JS, Langaee TY, Lesko LJ, Gong Y (2016) Osteonecrosis of the Jaw in the United States Food and Drug Administration’s Adverse Event Reporting System (FAERS). J Bone Miner Res 31:336–340

    Article  CAS  PubMed  Google Scholar 

  67. Crandall CJ, Newberry SJ, Diamant A, et al. (2012) Treatment to prevent fractures in men and women with low bone density or osteoporosis: update of a 2007 Report. Rockville (MD). Report No.: 12EHCO23-EF

  68. Levis S, Theodore G (2012) Summary of AHRQ’s comparative effectiveness review of treatment to prevent fractures in men and women with low bone density or osteoporosis: update of the 2007 report. J Manag Care Pharm 18:S1-15 (discussion S13)

    PubMed  Google Scholar 

  69. Yarom N, Shapiro CL, Peterson DE et al (2019) Medication-related osteonecrosis of the jaw: MASCC/ISOO/ASCO clinical practice guideline. J Clin Oncol 37:2270–2290

    Article  PubMed  Google Scholar 

  70. Khow KS, Shibu P, Yu SC, Chehade MJ, Visvanathan R (2017) Epidemiology and postoperative outcomes of atypical femoral fractures in older adults: a systematic review. J Nutr Health Aging 21:83–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam I. Khan.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.I. Management of bone loss due to endocrine therapy during cancer treatment. Osteoporos Int 34, 671–680 (2023). https://doi.org/10.1007/s00198-023-06672-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-023-06672-3

Keywords

Navigation