Skip to main content

Advertisement

Log in

Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Wnt signaling and its bone tissue–specific inhibitor sclerostin are key regulators of bone homeostasis. The therapeutic potential of anti-sclerostin antibodies (Scl-Abs), for bone mass recovery and fragility fracture prevention in low bone mass phenotypes, has been supported by animal studies. The Scl-Ab romosozumab is currently used for osteoporosis treatment.

Introduction

Wnt signaling is a key regulator of skeletal development and homeostasis; germinal mutations affecting genes encoding components, inhibitors, and enhancers of the Wnt pathways were shown to be responsible for the development of rare congenital metabolic bone disorders. Sclerostin is a bone tissue–specific inhibitor of the Wnt/β-catenin pathway, secreted by osteocytes, negatively regulating osteogenic differentiation and bone formation, and promoting osteoclastogenesis and bone resorption.

Purpose and methods

Here, we reviewed current knowledge on the role of sclerostin and Wnt pathways in bone metabolism and skeletal disorders, and on the state of the art of therapy with sclerostin-neutralizing antibodies in low-bone-mass diseases.

Results

Various in vivo studies on animal models of human low-bone-mass diseases showed that targeting sclerostin to recover bone mass, restore bone strength, and prevent fragility fracture was safe and effective in osteoporosis, osteogenesis imperfecta, and osteoporosis pseudoglioma. Currently, only treatment with romosozumab, a humanized monoclonal anti-sclerostin antibody, has been approved in human clinical practice for the treatment of osteoporosis, showing a valuable capability to increase BMD at various skeletal sites and reduce the occurrence of new vertebral, non-vertebral, and hip fragility fractures in treated male and female osteoporotic patients.

Conclusions

Preclinical studies demonstrated safety and efficacy of therapy with anti-sclerostin monoclonal antibodies in the preservation/restoration of bone mass and prevention of fragility fractures in low-bone-mass clinical phenotypes, other than osteoporosis, to be validated by clinical studies for their approved translation into prevalent clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A, Lee E (2013) The way Wnt works: components and mechanism. Growth Factors 31(1):1–31. https://doi.org/10.3109/08977

    Article  CAS  Google Scholar 

  2. Chen C, Zhao M, Tian A, Zhang X, Yao Z, Ma X (2015) Aberrant activation of Wntbeta-catenin signaling drives proliferation of bone sarcoma cells. Oncotarget 6(19):17570–83. https://doi.org/10.18632/oncotarget.4100.194.2012.752737

    Article  Google Scholar 

  3. Maeda K, Kobayashi Y, Koide M, Uehara S, Okamoto M, Ishihara A, Kayama T, Saito M, Marumo K (2019) The regulation of bone metabolism and disorders by Wnt signaling. Int J Mol Sci 20(22):5525. https://doi.org/10.3390/ijms20225525

    Article  CAS  Google Scholar 

  4. Duan P, Bonewald LF (2016) The role of the wnt/beta-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol 77(PtA):23–29. https://doi.org/10.1016/j.biocel.2016.05.015

    Article  CAS  Google Scholar 

  5. Jiang X, Charlat O, Zamponi R, Yang Y, Cong F (2015) Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell 58(3):522–533. https://doi.org/10.1016/j.molcel.2015.03.015

    Article  CAS  Google Scholar 

  6. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21(2):115–137. https://doi.org/10.1210/edrv.21.2.0395

    Article  CAS  Google Scholar 

  7. Wan Y, Lu C, Cao J, Zhou R, Yao Y, Yu J, Zhang L, Zhao H, Li H, Zhao J, Zhu X, He L, Liu Y, Yao Z, Yang X, Guo X (2013) Osteoblastic Wnts differentially regulate bone remodeling and the maintenance of bone marrow mesenchymal stem cells. Bone 55(1):258–267. https://doi.org/10.1016/j.bone.2012.12.052

    Article  CAS  Google Scholar 

  8. Lu C, Wan Y, Cao J, Zhu X, Yu J, Zhou R, Yao Y, Zhang L, Zhao H, Li H, Zhao J, He L, Ma G, Yang X, Yao Z, Guo X (2013) Wnt-mediated reciprocal regulation between cartilage and bone development during endochondral ossification. Bone 53(2):566–574. https://doi.org/10.1016/j.bone.2012.12.016

    Article  CAS  Google Scholar 

  9. Lerner UH, Ohlsson C (2015) The WNT system: background and its role in bone. J Intern Med 277(6):630–649. https://doi.org/10.1111/joim.12368

    Article  CAS  Google Scholar 

  10. Joeng KS, Lee YC, Lim J, Chen Y, Jiang MM, Munivez E, Ambrose C, Lee BH (2017) Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J Clin Invest 127(7):2678–2688. https://doi.org/10.1172/JCI92617

    Article  Google Scholar 

  11. Grassi F, Tyagi AM, Calvert JW, Gambari L, Walker LD, Yu M, Robinson J, Li J-Y, Lisignoli G, Vaccaro C, Adams J, Pacifici R (2016) Hydrogen sulfide is a novel regulator of bone formation implicated in the bone loss induced by estrogen deficiency. J Bone Miner Res 31:949–963. https://doi.org/10.1002/jbmr.2757

    Article  CAS  Google Scholar 

  12. Boland GM, Perkins G, Hall DJ, Tuan RS (2004) Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 93(6):1210–1230. https://doi.org/10.1002/jcb.20284

    Article  CAS  Google Scholar 

  13. Shen J, Chen X, Jia H, Meyers CA, Shrestha S, Asatrian G, Ding C, Tsuei R, Zhang X, Peault B, Ting K, Soo C, James AW (2018) Effects of WNT3A and WNT16 on the osteogenic and adipogenic differentiation of perivascular stem/stromal cells. Tissue Eng Part A 24(1–2):68–80. https://doi.org/10.1089/ten.TEA.2016.0387

    Article  CAS  Google Scholar 

  14. Hamamura K, Chen A, Nishimura A, Tanjung N, Sudo A, Yokota H (2014) Predicting and validating the pathway of Wnt3a-driven suppression of osteoclastogenesis. Cell Signal 26(11):2358–2369. https://doi.org/10.1016/j.cellsig.2014.07.018

    Article  CAS  Google Scholar 

  15. Tu X, Joeng KS, Nakayama KI, Nakayama K, Rajagopal J, Carroll TJ, McMahon AP, Long F (2007) Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell 12(1):113–127. https://doi.org/10.1016/j.devcel.2006.11.003

    Article  CAS  Google Scholar 

  16. Qiu W, Chen L, Kassem M (2011) Activation of non-canonical Wnt/JNK pathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal) stem cells. Biochem Biophys Res Commun 413(1):98–104. https://doi.org/10.1016/j.bbrc.2011.08.061

    Article  CAS  Google Scholar 

  17. Chang J, Sonoyama W, Wang Z, Jin Q, Zhang C, Krebsbach PH, Giannobile W, Shi S, Wang CY (2007) Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 282(42):30938–30948. https://doi.org/10.1074/jbc.M702391200

    Article  CAS  Google Scholar 

  18. Yu B, Chang J, Liu Y, Li J, Kevork K, Al-Hezaimi K, Graves DT, Park NH, Wang CY (2014) Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-kappaB. Nat Med 20(9):1009–1017. https://doi.org/10.1038/nm.3586

    Article  CAS  Google Scholar 

  19. Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, Kikuchi Y, Takada I, Kato S, Kani S, Nishita M, Marumo K, Martin TJ, Minami Y, Takahashi N (2012) Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med 18(3):405–412. https://doi.org/10.1038/nm.2653

    Article  CAS  Google Scholar 

  20. Bilkovski R, Schulte DM, Oberhauser F, Gomolka M, Udelhoven M, Hettich MM, Roth B, Heidenreich A, Gutschow C, Krone W, Laudes M (2010) Role of WNT-5a in the determination of human mesenchymal stem cells into preadipocytes. J Biol Chem 285(9):6170–6178. https://doi.org/10.1074/jbc.M109.054338

    Article  CAS  Google Scholar 

  21. Nemoto E, Ebe Y, Kanaya S, Tsuchiya M, Nakamura T, Tamura M, Shimauchi H (2012) Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis. Biochem Biophys Res Commun 422(4):627–632. https://doi.org/10.1016/j.bbrc.2012.05.039

    Article  CAS  Google Scholar 

  22. Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5(8):442–447. https://doi.org/10.1038/nrrheum.2009.137

    Article  CAS  Google Scholar 

  23. Yang Y, Topol L, Lee H, Wu J (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130:1003–1015. https://doi.org/10.1242/dev.00324

    Article  CAS  Google Scholar 

  24. Ling IT, Rochard L, Liao EC (2017) Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification. Dev Biol 421(2):219–232. https://doi.org/10.1016/j.ydbio.2016.11.016

    Article  CAS  Google Scholar 

  25. Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibañez G, MacDougald OA (2012) Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone 50(2):477–489. https://doi.org/10.1016/j.bone.2011.08.010

    Article  CAS  Google Scholar 

  26. Yang L, Li Q, Zhang J, Li P, An P, Wang C, Hu P, Zou X, Dou X, Zhu L (2021) Wnt7a promotes the osteogenic differentiation of human mesenchymal stem cells. Int J Mol Med 47(6):94. https://doi.org/10.3892/ijmm.2021.4927

    Article  CAS  Google Scholar 

  27. Chen J, Tu X, Esen E, Joeng KS, Lin C, Arbeit JM, Rüegg MA, Hall MN, Ma L, Long F (2014) WNT7B promotes bone formation in part through mTORC1. PLoS Genet 10(1):e1004145. https://doi.org/10.1371/journal.pgen.1004145

    Article  CAS  Google Scholar 

  28. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102(9):3324–3329. https://doi.org/10.1073/pnas.0408742102

    Article  CAS  Google Scholar 

  29. Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, Hankenson KD, MacDougald OA (2007) Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 22(12):1924–1932. https://doi.org/10.1359/jbmr.070810

    Article  CAS  Google Scholar 

  30. Zhong Z, Zylstra-Diegel CR, Schumacher CA, Baker JJ, Carpenter AC, Rao S, Yao W, Guan M, Helms JA, Lane NE, Lang RA, Williams BO (2012) Wntless functions in mature osteoblasts to regulate bone mass. Proc Natl Acad Sci U S A 109(33):E2197-204. https://doi.org/10.1073/pnas.1120407109

    Article  Google Scholar 

  31. Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8(5):751–764. https://doi.org/10.1016/j.devcel.2005.02.017

    Article  CAS  Google Scholar 

  32. Wei W, Zeve D, Suh JM, Wang X, Du Y, Zerwekh JE, Dechow PC, Graff JM, Wan Y (2011) Biphasic and dosage-dependent regulation of osteoclastogenesis by beta-catenin. Mol Cell Biol 31(23):4706–4719. https://doi.org/10.1128/MCB.05980-11

    Article  CAS  Google Scholar 

  33. Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW, Zhao M (2013) Wnt/beta-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 52(1):145–156. https://doi.org/10.1016/j.bone.2012.09.029

    Article  CAS  Google Scholar 

  34. Zhang M, Yan Y, Lim YB, Tang D, Xie R, Chen A, Tai P, Harris SE, Xing L, Qin YX, Chen D (2009) BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts. J Cell Biochem 108(4):896–905. https://doi.org/10.1002/jcb.22319

    Article  CAS  Google Scholar 

  35. Tang N, Song WX, Luo J, Luo X, Chen J, Sharff KA, Bi Y, He BC, Huang JY, Zhu GH, Su YX, Jiang W, Tang M, He Y, Wang Y, Chen L, Zuo GW, Shen J, Pan X, Reid RR, Luu HH, Haydon RC, He TC (2009) BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med 13(8B):2448–2464. https://doi.org/10.1111/j.1582-4934.2008.00569.x

    Article  Google Scholar 

  36. Gao Y, Huang E, Zhang H, Wang J, Wu N, Chen X, Wang N, Wen S, Nan G, Deng F, Liao Z, Wu D, Zhang B, Zhang J, Haydon RC, Luu HH, Shi LL, He TC (2013) Crosstalk between Wnt/beta-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells. PLoS ONE 8(12):e82436. https://doi.org/10.1371/journal.pone.0082436

    Article  CAS  Google Scholar 

  37. Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E (2008) Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 149(8):3890–3899. https://doi.org/10.1210/en.2008-0140

    Article  CAS  Google Scholar 

  38. Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133(16):3231–3244. https://doi.org/10.1242/dev.02480

    Article  CAS  Google Scholar 

  39. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13(2):156–163. https://doi.org/10.1038/nm1538

    Article  CAS  Google Scholar 

  40. Li S, Yin Y, Yao L, Lin Z, Sun S, Zhang J, Li X (2020) TNF-alpha treatment increases DKK1 protein levels in primary osteoblasts via upregulation of DKK1 mRNA levels and downregulation of miR-335-5p. Mol Med Rep 22(2):1017–1025. https://doi.org/10.3892/mmr.2020.11152

    Article  CAS  Google Scholar 

  41. Rosen EY, Wexler EM, Versano R, Coppola G, Gao F, Winden KD, Oldham MC, Martens LH, Zhou P, Farese RV Jr, Geschwind DH (2011) Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling. Neuron 71(6):1030–1042. https://doi.org/10.1016/j.neuron.2011.07.021

    Article  CAS  Google Scholar 

  42. Wang T, Xu Z (2010) miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 402(2):186–189. https://doi.org/10.1016/j.bbrc.2010.08.031

    Article  CAS  Google Scholar 

  43. Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J (2011) Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 26(8):1953–1963. https://doi.org/10.1002/jbmr.377

    Article  CAS  Google Scholar 

  44. Zhang L, Tang Y, Zhu X, Tu T, Sui L, Han Q, Yu L, Meng S, Zheng L, Valverde P, Tang J, Murray D, Zhou X, Drissi H, Dard MM, Tu Q, Chen J (2017) Overexpression of MiR-335-5p promotes bone formation and regeneration in mice. J Bone Miner Res 32(12):2466–2475. https://doi.org/10.1002/jbmr.3230

    Article  CAS  Google Scholar 

  45. Zhang WB, Zhong WJ, Wang L (2014) A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone 58:59–66. https://doi.org/10.1016/j.bone.2013.09.015

    Article  CAS  Google Scholar 

  46. Melnik S, Gabler J, Dreher SI, Hecht N, Hofmann N, Großner T, Richter W (2020) MiR-218 affects hypertrophic differentiation of human mesenchymal stromal cells during chondrogenesis via targeting RUNX2, MEF2C, and COL10A1. Stem Cell Res Ther 11(1):532. https://doi.org/10.1186/s13287-020-02026-6

    Article  CAS  Google Scholar 

  47. Zhang Z, Jiang W, Hu M, Gao R, Zhou X (2021) MiR-486-3p promotes osteogenic differentiation of BMSC by targeting CTNNBIP1 and activating the Wnt/beta-catenin pathway. Biochem Biophys Res Commun 566:59–66. https://doi.org/10.1016/j.bbrc.2021.05.098

    Article  CAS  Google Scholar 

  48. Wei Y, Ma H, Zhou H, Yin H, Yang J, Song Y, Yang B (2021) miR-424-5p shuttled by bone marrow stem cells-derived exosomes attenuates osteogenesis via regulating WIF-mediated Wnt/beta-catenin axis. Aging (Albany NY) 13(13):17190–17201. https://doi.org/10.18632/aging.203169

    Article  CAS  Google Scholar 

  49. Huang Y, Wan S, Yang M (2021) Circ_0067680 expedites the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells through miR-4429/CTNNB1/Wnt/beta-catenin pathway. Biol Direct 16(1):16. https://doi.org/10.1186/s13062-021-00302-w

    Article  CAS  Google Scholar 

  50. Lu Y, Liu YK, Wan FY, Shi S, Tao R (2022) CircSmg5 stimulates the osteogenic differentiation of bone marrow mesenchymal stem cells by targeting the miR-194-5p/Fzd6 axis and beta-catenin signaling. Environ Toxicol 37(3):593–602. https://doi.org/10.1002/tox.23425

    Article  CAS  Google Scholar 

  51. Delgado-Calle J, Sato AY, Bellido T (2017) Role and mechanism of action of sclerostin in bone. Bone 96:29–37. https://doi.org/10.1016/j.bone.2016.10.007

    Article  CAS  Google Scholar 

  52. van Bezooijen RL, ten Dijke P, Papapoulos SE, Löwik CW (2005) SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 16(3):319–327. https://doi.org/10.1016/j.cytogfr.2005.02.005

    Article  CAS  Google Scholar 

  53. Sutherland MK, Geoghegan JC, Yu C, Turcott E, Skonier JE, Winkler DG (2004) Latham J. Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone 35(4):828–835. https://doi.org/10.1016/j.bone.2004.05.023

    Article  CAS  Google Scholar 

  54. Ota K, Quint P, Ruan M, Pederson L, Westendorf JJ, Khosla S, Oursler MJ (2013) Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. J Cell Biochem 114(8):1901–1907. https://doi.org/10.1002/jcb.24537

    Article  CAS  Google Scholar 

  55. Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, Bouwmeester T, Schirle M, Bueno-Lozano M, Fuentes FJ, Itin PH, Boudin E, de Freitas F, Jennes K, Brannetti B, Charara N, Ebersbach H, Geisse S, Lu CX, Bauer A, Van Hul W, Kneissel M (2011) Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem 286(22):19489–19500. https://doi.org/10.1074/jbc.M110.190330

    Article  CAS  Google Scholar 

  56. Levasseur R, Lacombe D, de Vernejoul MC (2005) LRP5 mutations in osteoporosis-pseudoglioma syndrome and high-bone-mass disorders. Joint Bone Spine 72(3):207–214. https://doi.org/10.1016/j.jbspin.2004.10.008

    Article  Google Scholar 

  57. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70(1):11–19. https://doi.org/10.1086/338450

    Article  CAS  Google Scholar 

  58. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346(20):1513–1521. https://doi.org/10.1056/NEJMoa013444

    Article  CAS  Google Scholar 

  59. Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Bénichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, Warman ML, De Vernejoul MC, Bollerslev J, Van Hul W (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72(3):763–771. https://doi.org/10.1086/368277

    Article  Google Scholar 

  60. Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, Reddy PS, Bodine PV, Robinson JA, Bhat B, Marzolf J, Moran RA, Bex F (2003) High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 18(6):960–974. https://doi.org/10.1359/jbmr.2003.18.6.960

    Article  CAS  Google Scholar 

  61. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10(5):537–543. https://doi.org/10.1093/hmg/10.5.537

    Article  CAS  Google Scholar 

  62. Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68(3):577–589. https://doi.org/10.1086/318811

    Article  CAS  Google Scholar 

  63. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23(6):860–869. https://doi.org/10.1359/jbmr.080216

    Article  Google Scholar 

  64. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23):6267–6276. https://doi.org/10.1093/emboj/cdg599

    Article  CAS  Google Scholar 

  65. Huang Q-Y, Li GHY, Kung AWC (2009) The -9247 T/C polymorphism in the SOST upstream regulatory region that potentially affects C/EBPalpha and FOXA1 binding is associated with osteoporosis. Bone 45(2):289–294. https://doi.org/10.1016/j.bone.2009.03.676

    Article  CAS  Google Scholar 

  66. Chang MK, Kramer I, Huber T, Kinzel B, Guth-Gundel S, Leupin O, Kneissel M (2014) Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels. Proc Natl Acad Sci U S A 111(48):E5187–E5195. https://doi.org/10.1073/pnas.1413828111

    Article  CAS  Google Scholar 

  67. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517. https://doi.org/10.1093/nar/gki033

    Article  CAS  Google Scholar 

  68. Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24(4):578–588. https://doi.org/10.1359/jbmr.081206

    Article  CAS  Google Scholar 

  69. Li X, Warmington KS, Niu QT, Asuncion FJ, Barrero M, Grisanti M, Dwyer D, Stouch B, Thway TM, Stolina M, Ominsky MS, Kostenuik PJ, Simonet WS, Paszty C, Ke HZ (2010) Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res 25(12):2647–2656. https://doi.org/10.1002/jbmr.182

    Article  CAS  Google Scholar 

  70. Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, Gong J, Gao Y, Cao J, Graham K, Tipton B, Cai J, Deshpande R, Zhou L, Hale MD, Lightwood DJ, Henry AJ, Popplewell AG, Moore AR, Robinson MK, Lacey DL, Simonet WS, Paszty C (2010) Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res 25(5):948–959. https://doi.org/10.1002/jbmr.14

    Article  CAS  Google Scholar 

  71. Agholme F, Li X, Isaksson H, Ke HZ, Aspenberg P (2010) Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J Bone Miner Res 25(11):2412–2418. https://doi.org/10.1002/jbmr.135

    Article  CAS  Google Scholar 

  72. Ominsky MS, Li C, Li X, Tan HL, Lee E, Barrero M, Asuncion FJ, Dwyer D, Han CY, Vlasseros F, Samadfam R, Jolette J, Smith SY, Stolina M, Lacey DL, Simonet WS, Paszty C, Li G, Ke HZ (2011) Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res 26(5):1012–1021. https://doi.org/10.1002/jbmr.307

    Article  CAS  Google Scholar 

  73. Ominsky MS, Boyd SK, Varela A, Jolette J, Felx M, Doyle N, Mellal N, Smith SY, Locher K, Buntich S, Pyrah I, Boyce RW (2017) Romosozumab improves bone mass and strength while maintaining bone quality in ovariectomized cynomolgus monkeys. J Bone Miner Res 32(4):788–801. https://doi.org/10.1002/jbmr.3036

    Article  CAS  Google Scholar 

  74. Alharbi M, Pinto G, Finidori G, Souberbielle JC, Guillou F, Gaubicher S, Le Merrer M, Polak M (2009) Pamidronate treatment of children with moderate-to-severe osteogenesis imperfecta: a note of caution. Horm Res 71(1):38–44. https://doi.org/10.1159/000173740

    Article  CAS  Google Scholar 

  75. Sinder BP, Eddy MM, Ominsky MS, Caird MS, Marini JC, Kozloff KM (2013) Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J Bone Miner Res 28(1):73–80. https://doi.org/10.1002/jbmr.1717

    Article  CAS  Google Scholar 

  76. Sinder BP, White LE, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM (2014) Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength. Osteoporos Int 25(8):2097–2107. https://doi.org/10.1007/s001

    Article  CAS  Google Scholar 

  77. Sinder BP, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM (2015) Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone 71:115–123. https://doi.org/10.1016/j.bone.2014.10.012.98-014-2737-y

    Article  CAS  Google Scholar 

  78. Roschger A, Roschger P, Keplingter P, Klaushofer K, Abdullah S, Kneissel M, Rauch F (2014) Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. Bone 66:182–188. https://doi.org/10.1016/j.bone.2014.06.015

    Article  CAS  Google Scholar 

  79. Cardinal M, Tys J, Roels T, Lafont S, Ominsky MS, Devogelaer JP, Chappard D, Mabilleau G, Ammann P, Nyssen-Behets C, Manicourt DH (2019) Sclerostin antibody reduces long bone fractures in the oim/oim model of osteogenesis imperfecta. Bone 124:137–147. https://doi.org/10.1016/j.bone.2019.04.011

    Article  CAS  Google Scholar 

  80. Cardinal M, Dessain A, Roels T, Lafont S, Ominsky MS, Devogelaer JP, Chappard D, Mabilleau G, Ammann P, Nyssen-Behets C, Manicourt DH (2020) Sclerostin-antibody treatment decreases fracture rates in axial skeleton and improves the skeletal phenotype in growing oim/oim mice. Calcif Tissue Int 106(5):494–508. https://doi.org/10.1007/s00223-019-00655-5

    Article  CAS  Google Scholar 

  81. Cardinal M, Chretien A, Roels T, Lafont S, Ominsky MS, Devogelaer JP, Manicourt DH, Behets C (2021) Gender-related impact of sclerostin antibody on bone in the osteogenesis imperfecta mouse. Front Genet 12:705505. https://doi.org/10.3389/fgene.2021.705505

    Article  Google Scholar 

  82. Kedlaya R, Veera S, Horan DJ, Moss RE, Ayturk UM, Jacobsen CM, Bowen ME, Paszty C, Warman ML, Robling AG (2013) Sclerostin inhibition reverses skeletal fragility in an Lrp-deficient mouse model of OPPG syndrome. Sci Transl Med 5(211):211ra158. https://doi.org/10.1126/scitranslmed.3006627

    Article  CAS  Google Scholar 

  83. Li X, Niu QT, Warmington KS, Asuncion FJ, Dwyer D, Grisanti M, Han CY, Stolina M, Eschenberg MJ, Kostenuik PJ, Simonet WS, Ominsky MS, Ke HZ (2014) Progressive increases in bone mass and bone strength in an ovariectomized rat model of osteoporosis after 26 weeks of treatment with a sclerostin antibody. Endocrinology 155(12):4785–4797. https://doi.org/10.1210/en.2013-1905

    Article  CAS  Google Scholar 

  84. Gingery A, Subramaniam M, Pitel KS, Li X, Ke HZ, Turner RT, Iwaniec UT, Hawse JR (2020) Sclerostin antibody treatment rescues the osteopenic bone phenotype of TGFbeta inducible early gene-1 knockout female mice. J Cell Physiol 235(7–8):5679–5688. https://doi.org/10.1002/jcp.29500

    Article  CAS  Google Scholar 

  85. Jacobsen CM, Barber LA, Ayturk UM, Roberts HJ, Deal LE, Schwartz MA, Weis M, Eyre D, Zurakowski D, Robling AG, Warman ML (2014) Targeting the LRP5 pathway improves bone properties in a mouse model of osteogenesis imperfecta. J Bone Miner Res 29(10):2297–2306. https://doi.org/10.1002/jbmr.2198

    Article  CAS  Google Scholar 

  86. Grafe I, Alexander S, Yang T, Lietman C, Homan EP, Munivez E, Chen Y, Jiang MM, Bertin T, Dawson B, Asuncion F, Ke HZ, Ominsky MS, Lee B (2016) Sclerostin antibody treatment improves the bone phenotype of Crtap(-/-) mice, a model of recessive osteogenesis imperfecta. J Bone Miner Res 31(5):1030–1040. https://doi.org/10.1002/jbmr.2776

    Article  CAS  Google Scholar 

  87. Kerschan-Schindl K (2020) Romosozumab: a novel bone anabolic treatment option for osteoporosis? Wien Med Wochenschr 170:124–131. https://doi.org/10.1007/s10354-019-00721-5

    Article  Google Scholar 

  88. Nealy KL, Harris KB (2021) Romosozumab: a novel injectable sclerostin inhibitor with anabolic and antiresorptive effects for osteoporosis. Ann Pharmacother 55(5):677–686. https://doi.org/10.1177/1060028020952764

    Article  CAS  Google Scholar 

  89. Lewiecki EM, Blicharski T, Goemaere S, Lippuner K, Meisner PD, Miller PD, Miyauchi A, Maddox J, Chen L, Horlait S (2018) A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J Clin Endocrinol Metab 103(9):3183–3193. https://doi.org/10.1210/jc.2017-02163

    Article  Google Scholar 

  90. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, Maddox J, Fan M, Meisner PD, Grauer A (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377(15):1417–1427. https://doi.org/10.1056/NEJMoa1708322

    Article  CAS  Google Scholar 

  91. Fixen C, Tunoa J (2021) Romosozumab: a review of efficacy, safety, and cardiovascular risk. Curr Osteoporos Rep 19(1):15–22. https://doi.org/10.1007/s11914-020-00652-w

    Article  Google Scholar 

  92. Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R, Schinke T, Karsenty G, Giachelli CM (2001) Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res 89(12):1147–1154. https://doi.org/10.1161/hh2401.101070

    Article  CAS  Google Scholar 

  93. Zhu D, Wallace Mackenzie NC, Millán JL, Farquharson C, MacRae VE (2011) The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS ONE 6(5):e19595. https://doi.org/10.1371/journal.pone.0019595

    Article  CAS  Google Scholar 

  94. De Maré A, Opdebeeck B, Neven E, D’Haese PC, Verhulst A (2022) Sclerostin protects against vascular calcification development in mice. J Bone Miner Res 37(4):687–699. https://doi.org/10.1002/jbmr.4503

    Article  CAS  Google Scholar 

  95. McColm J, Hu L, Womack T, Tang CC, Chiang AY (2014) Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Miner Res 29(4):935–943. https://doi.org/10.1002/jbmr.2092

    Article  CAS  Google Scholar 

  96. Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J, Chiang AY, Hu L, Krege JH, Sowa H, Mitlak BH, Myers SL (2015) A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res 30(2):216–224. https://doi.org/10.1002/jbmr.2351

    Article  CAS  Google Scholar 

  97. Appelman-Dijkstra NM, Oei HLDW, Vlug AG (2022) Winter EM (2022) Best Pract Res Clin Endocrinol Metab. In press Corrected proof available online 9:101623

    Google Scholar 

  98. Glorieux FH, Devogelaer JP, Durigova M, Goemaere S, Hemsley S, Jakob F, Junker U, Ruckle J, Seefried L, Winkle PJ (2017) BPS804 anti-sclerostin antibody in adults with moderate osteogenesis imperfecta: results of a randomized phase 2a trial. J Bone Miner Res 32(7):1496–1504. https://doi.org/10.1002/jbmr.3143

    Article  CAS  Google Scholar 

  99. Seefried L, Baumann J, Hemsley S, Hofmann C, Kunstmann E, Kiese B, Huang Y, Chivers S, Valentin MA, Borah B, Roubenoff R, Junker U, Jakob F (2017) Efficacy of anti-sclerostin monoclonal antibody BPS804 in adult patients with hypophosphatasia. J Clin Invest 127(6):2148–2158. https://doi.org/10.1172/JCI83731

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Fondazione FIRMO Onlus for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Brandi.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marini, F., Giusti, F., Palmini, G. et al. Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int 34, 213–238 (2023). https://doi.org/10.1007/s00198-022-06523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06523-7

Keywords

Navigation