Skip to main content

Advertisement

Log in

Management of osteoporosis in patients with chronic kidney disease

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Patients with CKD have a 4–fivefold higher rate of fractures. The incidence of fractures increases with deterioration of kidney function. The process of skeletal changes in CKD patients is characterized by compromised bone strength because of deterioration of bone quantity and/or quality. The fractures lead to a deleterious effect on the quality of life and higher mortality in patients with CKD. The pathogenesis of bone loss and fracture is complex and multi-factorial. Renal osteodystrophy, uremic milieu, drugs, and systemic diseases that lead to renal failure all contribute to bone damage in CKD patients. There is no consensus on the optimal diagnostic method of compromised bone assessment in patients with CKD. Bone quantity and mass can be assessed by dual-energy x-ray absorptiometry (DXA) or quantitative computed tomography (QCT). Bone quality on the other side can be assessed by non-invasive methods such as trabecular bone score (TBS), high-resolution bone imaging methods, and invasive bone biopsy. Bone turnover markers can reflect bone remodeling, but some of them are retained by kidneys. Understanding the mechanism of bone loss is pivotal in preventing fracture in patients with CKD. Several non-pharmacological and therapeutic interventions have been reported to improve bone health. Controlling laboratory abnormalities of CKD-MBD is crucial. Anti-resorptive therapies are effective in improving BMD and reducing fracture risk, but there are uncertainties about safety and efficacy especially in advanced CKD patients. Accepting the prevalent of low bone turnover in patients with advanced CKD, the osteo-anabolics are possibly promising. Parathyroidectomy should be considered a last resort for intractable cases of renal hyperparathyroidism. There is a wide unacceptable gap in osteoporosis management in patients with CKD. This article is focusing on the updated management of CKD-MBD and osteoporosis in CKD patients.

Mini Abstract

Chronic kidney disease deteriorates bone quality and quantity. The mechanism of bone loss mainly determines pharmacological treatment. DXA and QCT provide information about bone quantity, but assessing bone quality, by TBS, high-resolution bone imaging, invasive bone biopsy, and bone turnover markers, can guide us about the mechanism of bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. WHO (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  2. WHO (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  3. NIH (2001) Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. JAMA 285:785–795

    Article  Google Scholar 

  4. Evenepoel P, Cunningham J, Ferrari S, Haarhaus M, Javaid MK, Lafage-Proust MH, Prieto-Alhambra D, Torres PU, Cannata-Andia J (2021) Diagnosis and management of osteoporosis in chronic kidney disease stages 4 to 5D: a call for a shift from nihilism to pragmatism. Osteoporos Int 32:2397–2405

    Article  CAS  PubMed  Google Scholar 

  5. Evenepoel P, Cunningham J, Ferrari S, Haarhaus M, Javaid MK, Lafage-Proust MH, Prieto-Alhambra D, Torres PU, Cannata-Andia J (2021) European Consensus Statement on the diagnosis and management of osteoporosis in chronic kidney disease stages G4–G5D. Nephrol Dial Transplant 36:42–59

    Article  CAS  PubMed  Google Scholar 

  6. Malluche HH, Porter DS, Monier-Faugere MC, Mawad H, Pienkowski D (2012) Differences in bone quality in low- and high-turnover renal osteodystrophy. J Am Soc Nephrol 23:525–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jadoul M, Albert J, Tyc A, Akizawa T, Arab L, Bragg-Gresham J, Mason N, Prutz K-G, Young E, Pisoni R (2006) Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int 70:1358–1366

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez Garcia M, Naves Diaz M, Cannata Andia JB (2005) Bone metabolism, vascular calcifications and mortality: associations beyond mere coincidence. J Nephrol 18:458–463

    CAS  PubMed  Google Scholar 

  9. Kazama JJ, Iwasaki Y, Fukagawa M (2013) Uremic osteoporosis. Kidney Int Suppl 3:446–450

    Article  CAS  Google Scholar 

  10. Neto R, Pereira L, Magalhães J, Quelhas-Santos J, Martins S, Carvalho C, Frazão JM (2021) Sclerostin and DKK1 circulating levels associate with low bone turnover in patients with chronic kidney disease Stages 3 and 4. Clin Kidney J

  11. Yamamoto S, Fukagawa M (2017) Uremic Toxicity and Bone in CKD. J Nephrol 30:623–627

    Article  PubMed  Google Scholar 

  12. Burr DB (2015) The complex relationship between bone remodeling and the physical and material properties of bone. Osteoporos Int: J Established Result Coop Between Eur Foundation Osteoporos Natl Osteoporos Foundation USA 26:845–847

    Article  CAS  Google Scholar 

  13. Najar MS, Mir MM, Muzamil M (2017) Prevalence of osteoporosis in patients with chronic kidney disease (stages 3–5) in comparison with age-and sex-matched controls: A study from Kashmir Valley Tertiary Care Center. Saudi J Kidney Dis Transplant 28:538

    Article  Google Scholar 

  14. Aggarwal H, Jain D, Yadav S, Kaverappa V (2013) Bone mineral density in patients with predialysis chronic kidney disease. Ren Fail 35:1105–1111

    Article  CAS  PubMed  Google Scholar 

  15. Huang GS, Chu TS, Lou MF, Hwang SL, Yang RS (2009) Factors associated with low bone mass in the hemodialysis patients–a cross-sectional correlation study. BMC Musculoskelet Disord 10:60

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sidibé A, Auguste D, Desbiens LC, Fortier C, Wang YP, Jean S, Moore L, Mac-Way F (2019) Fracture risk in dialysis and kidney transplanted patients: a systematic review. JBMR plus 3:45–55

    Article  PubMed  Google Scholar 

  17. Barreto FC, Barreto DV, Moyses RMA, Neves CL, Jorgetti V, Draibe SA, Canziani ME, Carvalho AB (2006) Osteoporosis in hemodialysis patients revisited by bone histomorphometry: A new insight into an old problem. Kidney Int 69:1852–1857

    Article  CAS  PubMed  Google Scholar 

  18. Nickolas TL, Stein E, Cohen A, Thomas V, Staron RB, McMahon DJ, Leonard MB, Shane E (2010) Bone mass and microarchitecture in CKD patients with fracture. J Am Soc Nephrol 21:1371–1380

    Article  PubMed  PubMed Central  Google Scholar 

  19. Malluche HH, Mawad HW, Monier-Faugere M-C (2011) Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res: Off J Am Soc Bone Miner Res 26:1368–1376

    Article  Google Scholar 

  20. Ensrud KE, Lui L-Y, Taylor BC, Ishani A, Shlipak MG, Stone KL, Cauley JA, Jamal SA, Antoniucci DM, Cummings SR (2007) Renal function and risk of hip and vertebral fractures in older women. Arch Intern Med 167:133–139

    Article  PubMed  Google Scholar 

  21. Fried LF, Biggs ML, Shlipak MG, Seliger S, Kestenbaum B, Stehman-Breen C, Sarnak M, Siscovick D, Harris T, Cauley J (2007) Association of kidney function with incident hip fracture in older adults. J Am Soc Nephrol 18:282–286

    Article  PubMed  Google Scholar 

  22. Mittalhenkle A, Gillen DL, Stehman-Breen CO (2004) Increased risk of mortality associated with hip fracture in the dialysis population. Am J Kidney Dis 44:672–679

    Article  PubMed  Google Scholar 

  23. Kini U, Nandeesh B (2012) Physiology of bone formation, remodeling, and metabolism. Radionuclide and hybrid bone imaging. Springer, 29–57

  24. Buckwalter J, Glimcher M, Cooper R, Recker R (1995) Bone biology. J Bone Joint Surg Am 77:1256–1275

    Article  Google Scholar 

  25. Einhorn T (1996) The bone organ system: form and function. Osteoporosis 3–22

  26. Hou YC, Lu CL, Lu KC (2018) Mineral bone disorders in chronic kidney disease. Nephrology 23:88–94

    Article  CAS  PubMed  Google Scholar 

  27. Taal MW, Masud T, Green D, Cassidy MJ (1999) Risk factors for reduced bone density in haemodialysis patients. Nephrol Dial Transplant 14:1922–1928

    Article  CAS  PubMed  Google Scholar 

  28. Musgrove J, Wolf M (2020) Regulation and Effects of FGF23 in Chronic Kidney Disease. Annu Rev Physiol 82:365–390

    Article  CAS  PubMed  Google Scholar 

  29. Tomasello S (2008) Secondary hyperparathyroidism and chronic kidney disease. Diabetes Spectrum 21:19–25

    Article  Google Scholar 

  30. Naveh-Many T, Rahamimov R, Livni N, Silver J (1995) Parathyroid cell proliferation in normal and chronic renal failure rats. The effects of calcium, phosphate, and vitamin D. J Clin Investig 96:1786–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ritter CS, Finch JL, Slatopolsky EA, Brown AJ (2001) Parathyroid hyperplasia in uremic rats precedes down-regulation of the calcium receptor. Kidney Int 60:1737–1744

    Article  CAS  PubMed  Google Scholar 

  32. Evenepoel P, D’haese P, Brandenburg V (2015) Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int 88:235–240

    Article  CAS  PubMed  Google Scholar 

  33. Hofbauer LC, Heufelder AE (2001) Role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in bone cell biology. J Mol Med 79:243–253

    Article  CAS  PubMed  Google Scholar 

  34. Lima F, Mawad H, El-Husseini AA, Davenport DL, Malluche HH (2019) Serum bone markers in ROD patients across the spectrum of decreases in GFR: activin A increases before all other markers. Clin Nephrol 91:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacques RM, Boonen S, Cosman F, Reid IR, Bauer DC, Black DM, Eastell R (2012) Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once-yearly zoledronic acid 5 mg: the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res: Off J Am Soc Bone Miner Res 27:1627–1634

    Article  CAS  Google Scholar 

  36. Group KDIGOC-MW (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Supplement S1-S130

  37. Ketteler M, Block GA, Evenepoel P et al (2017) Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney Int 92:26–36. Kidney Int 92:1558

  38. Yenchek RH, Ix JH, Shlipak MG, Bauer DC, Rianon NJ, Kritchevsky SB, Harris TB, Newman AB, Cauley JA, Fried LF (2012) Bone mineral density and fracture risk in older individuals with CKD. Clin J Am Soc Nephrol 7:1130–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Asadipooya K, Abdalbary M, Ahmad Y, Kakani E, Monier-Faugere MC, El-Husseini A (2021) Bone Quality in CKD Patients: Current Concepts and Future Directions – Part I. Kidney Dis 7:268–277

    Article  Google Scholar 

  40. Kanis JA, Cooper C, Rizzoli R, Reginster JY (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int: J Established Result Coop Between Eur Found Osteoporos Natl Osteoporos Found USA 30:3–44

    Article  CAS  Google Scholar 

  41. Lekamwasam S (2019) The diversity of Fracture Risk Assessment Tool (FRAX)-based intervention thresholds in Asia. Osteoporos Sarcopenia 5:104–108

    Article  PubMed  PubMed Central  Google Scholar 

  42. Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res: Off J Am Soc Bone Miner Res 27:301–308

    Article  Google Scholar 

  43. Piraino B, Chen T, Cooperstein L, Segre G, Puschett J (1988) Fractures and vertebral bone mineral density in patients with renal osteodystrophy. Clin Nephrol 30:57–62

    CAS  PubMed  Google Scholar 

  44. Sakhaee K, Gonzalez GB (1999) Update on renal osteodystrophy: pathogenesis and clinical management. Am J Med Sci 317:251–260

    Article  CAS  PubMed  Google Scholar 

  45. Jamal SA, West SL, Nickolas TL (2014) The clinical utility of FRAX to discriminate fracture status in men and women with chronic kidney disease. Osteoporos Int 25:71–76

    Article  CAS  PubMed  Google Scholar 

  46. Naylor KL, Garg AX, Zou G et al (2015) Comparison of fracture risk prediction among individuals with reduced and normal kidney function. Clin J Am Soc Nephrol: CJASN 10:646–653

    Article  PubMed  PubMed Central  Google Scholar 

  47. Whitlock RH, Leslie WD, Shaw J, Rigatto C, Thorlacius L, Komenda P, Collister D, Kanis JA, Tangri N (2019) The Fracture Risk Assessment Tool (FRAX®) predicts fracture risk in patients with chronic kidney disease. Kidney Int 95:447–454

    Article  PubMed  Google Scholar 

  48. Tseng T, Mu C, Hsu C (2014) The correlation between renal function and bone mineral density. Minerva Urol Nefrol 66:153–156

    Google Scholar 

  49. Rampersad C, Whitlock RH, Leslie WD, Rigatto C, Komenda P, Bohm C, Hans D, Tangri N (2020) Trabecular bone score in patients with chronic kidney disease. Osteoporos Int: J Established Result Coop Between Eur Found Osteoporos Natl Osteoporos Found USA 31:1905–1912

    Article  CAS  Google Scholar 

  50. Aleksova J, Kurniawan S, Elder GJ (2018) The trabecular bone score is associated with bone mineral density, markers of bone turnover and prevalent fracture in patients with end stage kidney disease. Osteoporos Int 29:1447–1455

    Article  CAS  PubMed  Google Scholar 

  51. Naylor KL, Prior J, Garg AX, Berger C, Langsetmo L, Adachi JD, Goltzman D, Kovacs CS, Josse RG, Leslie WD (2016) Trabecular Bone Score and Incident Fragility Fracture Risk in Adults with Reduced Kidney Function. Clin J Am Soc Nephrol: CJASN 11:2032–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ramalho J, Marques IDB, Hans D, Dempster D, Zhou H, Patel P, Pereira RMR, Jorgetti V, Moyses RMA, Nickolas TL (2018) The trabecular bone score: Relationships with trabecular and cortical microarchitecture measured by HR-pQCT and histomorphometry in patients with chronic kidney disease. Bone 116:215–220

    Article  CAS  PubMed  Google Scholar 

  53. Krieg MA, Aubry-Rozier B, Hans D, Leslie WD, Manitoba Bone Density P (2013) Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos Int: J Established Result Coop Between Eur Found Osteoporos Natl Osteoporos Found USA 24:1073–1078

    Article  CAS  Google Scholar 

  54. Leslie WD, Aubry-Rozier B, Lix LM, Morin SN, Majumdar SR, Hans D (2014) Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba Bone Density Program. Bone 67:10–14

    Article  CAS  PubMed  Google Scholar 

  55. Leslie WD, Johansson H, Kanis JA, Lamy O, Oden A, McCloskey EV, Hans D (2014) Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporos Int 25:2271–2277

    Article  CAS  PubMed  Google Scholar 

  56. McCloskey EV, Odén A, Harvey NC et al (2016) A Meta-Analysis of Trabecular Bone Score in Fracture Risk Prediction and Its Relationship to FRAX. J Bone Miner Res 31:940–948

    Article  PubMed  Google Scholar 

  57. Fusaro M, Tripepi G, Noale M et al (2013) High prevalence of vertebral fractures assessed by quantitative morphometry in hemodialysis patients, strongly associated with vascular calcifications. Calcif Tissue Int 93:39–47

    Article  CAS  PubMed  Google Scholar 

  58. Lems WF, Paccou J, Zhang J, Fuggle NR, Chandran M, Harvey NC, Cooper C, Javaid K, Ferrari S, Akesson KE (2021) Vertebral fracture: epidemiology, impact and use of DXA vertebral fracture assessment in fracture liaison services. Osteoporos Int 32:399–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3:281–290

    Article  CAS  PubMed  Google Scholar 

  60. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R (2014) Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int 25:2359–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duboeuf F, Bauer DC, Chapurlat RD, Dinten JM, Delmas P (2005) Assessment of vertebral fracture using densitometric morphometry. J Clin Densitom 8:362–368

    Article  CAS  PubMed  Google Scholar 

  62. Deleskog L, Laursen N, Nielsen BR, Schwarz P (2016) Vertebral fracture assessment by DXA is inferior to X-ray in clinical severe osteoporosis. Osteoporos Int 27:2317–2326

    Article  CAS  PubMed  Google Scholar 

  63. van Brussel MS, Lems WF (2009) Clinical relevance of diagnosing vertebral fractures by vertebral fracture assessment. Curr Osteoporos Rep 7:103–106

    Article  PubMed  Google Scholar 

  64. Vasikaran S, Eastell R, Bruyère O et al (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420

    Article  CAS  PubMed  Google Scholar 

  65. Miller PD (2005) Bone density and markers of bone turnover in predicting fracture risk and how changes in these measures predict fracture risk reduction. Curr Osteoporos Rep 3:103–110

    Article  PubMed  Google Scholar 

  66. Szulc P, Naylor K, Hoyle NR, Eastell R, Leary ET (2017) Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int 28:2541–2556

    Article  CAS  PubMed  Google Scholar 

  67. Tridimas A, Milan A, Marks E (2021) Assessing bone formation in patients with chronic kidney disease using procollagen type I N-terminal propeptide (PINP): The choice of assay makes a difference. Ann Clin Biochem 45632211025567

  68. Sprague SM, Bellorin-Font E, Jorgetti V et al (2016) Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients With CKD Treated by Dialysis. Am J Kidney Dis 67:559–566

    Article  PubMed  Google Scholar 

  69. Monier-Faugere MC, Geng Z, Mawad H, Friedler RM, Gao P, Cantor TL, Malluche HH (2001) Improved assessment of bone turnover by the PTH-(1–84)/large C-PTH fragments ratio in ESRD patients. Kidney Int 60:1460–1468

    Article  CAS  PubMed  Google Scholar 

  70. Urena P, Hruby M, Ferreira A, Ang KS, de Vernejoul MC (1996) Plasma total versus bone alkaline phosphatase as markers of bone turnover in hemodialysis patients. J Am Soc Nephrol 7:506–512

    Article  CAS  PubMed  Google Scholar 

  71. Laowalert S, Khotavivattana T, Wattanachanya L, Luangjarmekorn P, Udomkarnjananun S, Katavetin P, Eiam-Ong S, Praditpornsilpa K, Susantitaphong P (2020) Bone turnover markers predict type of bone histomorphometry and bone mineral density in Asian chronic haemodialysis patients. Nephrology (Carlton) 25:163–171

    Article  CAS  Google Scholar 

  72. Barreto FC, Barreto DV, Moysés RM, Neves KR, Canziani ME, Draibe SA, Jorgetti V, Carvalho AB (2008) K/DOQI-recommended intact PTH levels do not prevent low-turnover bone disease in hemodialysis patients. Kidney Int 73:771–777

    Article  CAS  PubMed  Google Scholar 

  73. Jørgensen HS, Behets G, Viaene L et al (2021) Diagnostic Accuracy of Noninvasive Bone Turnover Markers in Renal Osteodystrophy. Am J Kidney Dis

  74. Crandall CJ, Vasan S, LaCroix A, LeBoff MS, Cauley JA, Robbins JA, Jackson RD, Bauer DC (2018) Bone Turnover Markers Are Not Associated With Hip Fracture Risk: A Case-Control Study in the Women’s Health Initiative. J Bone Miner Res 33:1199–1208

    Article  CAS  PubMed  Google Scholar 

  75. Jørgensen HS, Winther S, Bøttcher M, Hauge EM, Rejnmark L, Svensson M, Ivarsen P (2017) Bone turnover markers are associated with bone density, but not with fracture in end stage kidney disease: a cross-sectional study. BMC Nephrol 18:284

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nickolas TL, Cremers S, Zhang A, Thomas V, Stein E, Cohen A, Chauncey R, Nikkel L, Yin MT, Liu XS (2011) Discriminants of prevalent fractures in chronic kidney disease. J Am Soc Nephrol 22:1560–1572

    Article  PubMed  PubMed Central  Google Scholar 

  77. Maruyama Y, Taniguchi M, Kazama JJ, Yokoyama K, Hosoya T, Yokoo T, Shigematsu T, Iseki K, Tsubakihara Y (2014) A higher serum alkaline phosphatase is associated with the incidence of hip fracture and mortality among patients receiving hemodialysis in Japan. Nephrol Dial Transplant 29:1532–1538

    Article  CAS  PubMed  Google Scholar 

  78. Iimori S, Mori Y, Akita W, Kuyama T, Takada S, Asai T, Kuwahara M, Sasaki S, Tsukamoto Y (2012) Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients–a single-center cohort study. Nephrol Dial Transplant: Off Publ Eur Dial Transplant Assoc- Eur Renal Assoc 27:345–351

    Article  CAS  Google Scholar 

  79. Malluche HH, Faugere MC (1986) Atlas of Mineralized Bone Histology. Karger, New York

    Google Scholar 

  80. Drüeke TB, Massy ZA (2016) Changing bone patterns with progression of chronic kidney disease. Kidney Int 89:289–302

    Article  PubMed  Google Scholar 

  81. Kanis J, Johnell O, Odén A, De Laet C, De Terlizzi F (2005) Ten-year probabilities of clinical vertebral fractures according to phalangeal quantitative ultrasonography. Osteoporos Int 16:1065–1070

    Article  CAS  PubMed  Google Scholar 

  82. Guglielmi G, Scalzo G, de Terlizzi F, Peh WC (2010) Quantitative ultrasound in osteoporosis and bone metabolism pathologies. Radiologic Clinics 48:577–588

    Article  PubMed  Google Scholar 

  83. Bridges D, Randall C, Hansma PK (2012) A new device for performing reference point indentation without a reference probe. Rev Sci Instrum 83:044301

    Article  PubMed  PubMed Central  Google Scholar 

  84. Randall C, Bridges D, Guerri R, Nogues X, Puig L, Torres E, Mellibovsky L, Hoffseth K, Stalbaum T, Srikanth A (2013) Applications of a new handheld reference point indentation instrument measuring bone material strength. J Med Devices 7:

  85. Güerri-Fernández RC, Nogués X, Quesada Gómez JM, Torres del Pliego E, Puig L, García-Giralt N, Yoskovitz G, Mellibovsky L, Hansma PK, Díez-Pérez A (2013) Microindentation for in vivo measurement of bone tissue material properties in atypical femoral fracture patients and controls. J Bone Miner Res 28:162–168

    Article  PubMed  Google Scholar 

  86. Schoeb M, Hamdy NAT, Malgo F, Winter EM, Appelman-Dijkstra NM (2020) Added Value of Impact Microindentation in the Evaluation of Bone Fragility: A Systematic Review of the Literature. Front Endocrinol (Lausanne) 11:15

    Article  Google Scholar 

  87. Holloway-Kew KL, Rufus-Membere P, Anderson KB, Betson A, Gaston J, Kotowicz MA, Diez-Perez A, Hyde NK, Pasco JA (2020) Bone material strength index is associated with prior fracture in men with and without moderate chronic kidney disease. Bone 133:115241

    Article  CAS  PubMed  Google Scholar 

  88. Asadipooya K, Abdalbary M, Ahmad Y, Kakani E, Monier-Faugere M-C, El-Husseini A (2021) Bone Quality in Chronic Kidney Disease Patients: Current Concepts and Future Directions–Part II. Kidney Dis 1–13

  89. Rysz J, Franczyk B, Rokicki R, Gluba-Brzózka A (2021) The Influence of Dietary Interventions on Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Nutrients 13:

  90. Krause R, Roth HJ, Kaase H, Stange R, Holick MF (2016) Vitamin D Status in Chronic Kidney Disease - UVB Irradiation Is Superior to Oral Supplementation. Anticancer Res 36:1397–1401

    CAS  PubMed  Google Scholar 

  91. Coen G, Mantella D, Manni M, Balducci A, Nofroni I, Sardella D, Ballanti P, Bonucci E (2005) 25-hydroxyvitamin D levels and bone histomorphometry in hemodialysis renal osteodystrophy. Kidney Int 68:1840–1848

    Article  CAS  PubMed  Google Scholar 

  92. Cardoso DF, Marques EA, Leal DV, Ferreira A, Baker LA, Smith AC, Viana JL (2020) Impact of physical activity and exercise on bone health in patients with chronic kidney disease: a systematic review of observational and experimental studies. BMC Nephrol 21:334–334

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yuan S, Michaëlsson K, Wan Z, Larsson SC (2019) Associations of Smoking and Alcohol and Coffee Intake with Fracture and Bone Mineral Density: A Mendelian Randomization Study. Calcif Tissue Int 105:582–588

    Article  CAS  PubMed  Google Scholar 

  94. Toussaint ND, Lau KK, Polkinghorne KR, Kerr PG (2011) Attenuation of aortic calcification with lanthanum carbonate versus calcium-based phosphate binders in haemodialysis: A pilot randomized controlled trial. Nephrology (Carlton) 16:290–298

    Article  CAS  Google Scholar 

  95. Raggi P, Chertow GM, Torres PU et al (2011) The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant 26:1327–1339

    Article  CAS  PubMed  Google Scholar 

  96. London GM, Marty C, Marchais SJ, Guerin AP, Metivier F, de Vernejoul MC (2004) Arterial calcifications and bone histomorphometry in end-stage renal disease. J Am Soc Nephrol 15:1943–1951

    Article  PubMed  Google Scholar 

  97. Behets GJ, Spasovski G, Sterling LR, Goodman WG, Spiegel DM, De Broe ME, D’Haese PC (2015) Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int 87:846–856

    Article  CAS  PubMed  Google Scholar 

  98. Diaz-Tocados JM, Rodriguez-Ortiz ME, Almaden Y et al (2019) Calcimimetics maintain bone turnover in uremic rats despite the concomitant decrease in parathyroid hormone concentration. Kidney Int 95:1064–1078

    Article  CAS  PubMed  Google Scholar 

  99. Jean G, Souberbielle JC, Chazot C (2017) Vitamin D in Chronic Kidney Disease and Dialysis Patients. Nutrients 9:

  100. Christodoulou M, Aspray TJ, Schoenmakers I (2021) Vitamin D Supplementation for Patients with Chronic Kidney Disease: A Systematic Review and Meta-analyses of Trials Investigating the Response to Supplementation and an Overview of Guidelines. Calcif Tissue Int 109:157–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Broadwell A, Chines A, Ebeling PR, Franek E, Huang S, Smith S, Kendler D, Messina O, Miller PD (2021) Denosumab Safety and Efficacy Among Participants in the FREEDOM Extension Study With Mild to Moderate Chronic Kidney Disease. J Clin Endocrinol Metab 106:397–409

    Article  PubMed  Google Scholar 

  102. Jamal SA, Ljunggren O, Stehman-Breen C et al (2011) Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res: Off J Am Soc Bone Miner Res 26:1829–1835

    Article  CAS  Google Scholar 

  103. Cheng BC, Chen YC (2017) Young patients and those with a low eGFR benefitted more from denosumab therapy in femoral neck bone mineral density. Clin Rheumatol 36:929–932

    Article  PubMed  Google Scholar 

  104. Chen CL, Chen NC, Hsu CY, Chou KJ, Lee PT, Fang HC, Renn JH (2014) An open-label, prospective pilot clinical study of denosumab for severe hyperparathyroidism in patients with low bone mass undergoing dialysis. J Clin Endocrinol Metab 99:2426–2432

    Article  CAS  PubMed  Google Scholar 

  105. Chen CL, Chen NC, Liang HL, Hsu CY, Chou KJ, Fang HC, Lee PT (2015) Effects of Denosumab and Calcitriol on Severe Secondary Hyperparathyroidism in Dialysis Patients With Low Bone Mass. J Clin Endocrinol Metab 100:2784–2792

    Article  CAS  PubMed  Google Scholar 

  106. Thongprayoon C, Acharya P, Acharya C et al (2018) Hypocalcemia and bone mineral density changes following denosumab treatment in end-stage renal disease patients: a meta-analysis of observational studies. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 29:1737–1745

    Article  CAS  Google Scholar 

  107. Kunizawa K, Hiramatsu R, Hoshino J et al (2020) Denosumab for dialysis patients with osteoporosis: A cohort study. Sci Rep 10:2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Iseri K, Watanabe M, Yoshikawa H, Mitsui H, Endo T, Yamamoto Y, Iyoda M, Ryu K, Inaba T, Shibata T (2019) Effects of Denosumab and Alendronate on Bone Health and Vascular Function in Hemodialysis Patients: A Randomized, Controlled Trial. J Bone Miner Res: Off J Am Soc Bone Miner Res 34:1014–1024

    Article  CAS  Google Scholar 

  109. Hiramatsu R, Ubara Y, Sawa N, Sakai A (2021) Hypocalcemia and bone mineral changes in hemodialysis patients with low bone mass treated with denosumab: a 2-year observational study. Nephrol Dial Transplant: Off Publ Eur Dial Transplant Assoc-Eur Renal Assoc 36:1900–1907

    Article  CAS  Google Scholar 

  110. Takami H, Washio K, Gotoh H (2017) Denosumab for Male Hemodialysis Patients with Low Bone Mineral Density: A Case-Control Study. Int J Nephrol 2017:6218129

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hiramatsu R, Ubara Y, Sawa N et al (2015) Denosumab for low bone mass in hemodialysis patients: a noncontrolled trial. Am J Kidney Dis 66:175–177

    Article  CAS  PubMed  Google Scholar 

  112. Block GA, Bone HG, Fang L, Lee E, Padhi D (2012) A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res: Off J Am Soc Bone Miner Res 27:1471–1479

    Article  CAS  Google Scholar 

  113. Festuccia F, Jafari MT, Moioli A, Fofi C, Barberi S, Amendola S, Sciacchitano S, Punzo G, Menè P (2017) Safety and efficacy of denosumab in osteoporotic hemodialysed patients. J Nephrol 30:271–279

    Article  CAS  PubMed  Google Scholar 

  114. Thongprayoon C, Acharya P, Aeddula NR et al (2019) Effects of denosumab on bone metabolism and bone mineral density in kidney transplant patients: a systematic review and meta-analysis. Arch Osteoporos 14:35

    Article  PubMed  Google Scholar 

  115. Cummings SR, Ferrari S, Eastell R et al (2018) Vertebral Fractures After Discontinuation of Denosumab: A Post Hoc Analysis of the Randomized Placebo-Controlled FREEDOM Trial and Its Extension. J Bone Miner Res: Off J Am Soc Bone Miner Res 33:190–198

    Article  CAS  Google Scholar 

  116. Ueki K, Yamada S, Tsuchimoto A, Tokumoto M, Kumano T, Kitazono T, Tsuruya K (2015) Rapid progression of vascular and soft tissue calcification while being managed for severe and persistent hypocalcemia induced by denosumab treatment in a patient with multiple myeloma and chronic kidney disease. Internal Med (Tokyo, Japan) 54:2637–2642

    Article  CAS  Google Scholar 

  117. Bergner R, Henrich D, Hoffmann M, Schmidt-Gayk H, Lenz T, Upperkamp M (2008) Treatment of reduced bone density with ibandronate in dialysis patients. J Nephrol 21:510–516

    CAS  PubMed  Google Scholar 

  118. Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG (2010) Effect of alendronate on vascular calcification in CKD stages 3 and 4: a pilot randomized controlled trial. Am J Kidney Dis 56:57–68

    Article  CAS  PubMed  Google Scholar 

  119. Mitsopoulos E, Ginikopoulou E, Economidou D, Zanos S, Pateinakis P, Minasidis E, Memmos D, Thodis E, Vargemezis V, Tsakiris D (2012) Impact of long-term cinacalcet, ibandronate or teriparatide therapy on bone mineral density of hemodialysis patients: a pilot study. Am J Nephrol 36:238–244

    Article  CAS  PubMed  Google Scholar 

  120. Miller PD, Roux C, Boonen S, Barton IP, Dunlap LE, Burgio DE (2005) Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J Bone Miner Res: Off J Am Soc Bone Miner Res 20:2105–2115

    Article  CAS  Google Scholar 

  121. Jamal SA, Bauer DC, Ensrud KE, Cauley JA, Hochberg M, Ishani A, Cummings SR (2007) Alendronate treatment in women with normal to severely impaired renal function: an analysis of the fracture intervention trial. J Bone Miner Res: Off J Am Soc Bone Miner Res 22:503–508

    Article  CAS  Google Scholar 

  122. Shigematsu T, Muraoka R, Sugimoto T, Nishizawa Y (2017) Risedronate therapy in patients with mild-to-moderate chronic kidney disease with osteoporosis: post-hoc analysis of data from the risedronate phase III clinical trials. BMC Nephrol 18:66

    Article  PubMed  PubMed Central  Google Scholar 

  123. Eastell R, Boonen S, Cosman F, Reid IR, Palermo L, Cummings SR, Black DM (2015) Relationship between pretreatment rate of bone loss and bone density response to once-yearly ZOL: HORIZON-PFT extension study. J Bone Miner Res: Off J Am Soc Bone Miner Res 30:570–574

    Article  Google Scholar 

  124. Amerling R, Harbord NB, Pullman J, Feinfeld DA (2010) Bisphosphonate use in chronic kidney disease: association with adynamic bone disease in a bone histology series. Blood Purif 29:293–299

    Article  CAS  PubMed  Google Scholar 

  125. Ketteler M, Block GA, Evenepoel P et al (2017) Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney Int 92:26–36

    Article  PubMed  Google Scholar 

  126. KDIGO (2017) Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 7:1–59

    Article  Google Scholar 

  127. Ma HY, Chen S, Lu LL, Gong W, Zhang AH (2021) Raloxifene in the Treatment of Osteoporosis in Postmenopausal Women with End-Stage Renal Disease: A Systematic Review and Meta-Analysis. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 53:730–737

  128. Hernandez E, Valera R, Alonzo E, Bajares-Lilue M, Carlini R, Capriles F, Martinis R, Bellorin-Font E, Weisinger JR (2003) Effects of raloxifene on bone metabolism and serum lipids in postmenopausal women on chronic hemodialysis. Kidney Int 63:2269–2274

    Article  CAS  PubMed  Google Scholar 

  129. Tanaka M, Itoh K, Matsushita K, Matsushita K, Moriishi M, Kawanishi H, Fukagawa M (2011) Effects of raloxifene on bone mineral metabolism in postmenopausal Japanese women on hemodialysis. Ther Apher Dial: Off Peer-Rev J Int Soc Apheresis Jpn Soc Apheresis Jpn Soc Dial Ther 15(Suppl 1):62–66

    Article  CAS  Google Scholar 

  130. Haghverdi F, Farbodara T, Mortaji S, Soltani P, Saidi N (2014) Effect of raloxifene on parathyroid hormone in osteopenic and osteoporotic postmenopausal women with chronic kidney disease stage 5. Iran J Kidney Dis 8:461–466

    PubMed  Google Scholar 

  131. Adami S, Palacios S, Rizzoli R, Levine AB, Sutradhar S, Chines AA (2014) The efficacy and safety of bazedoxifene in postmenopausal women by baseline kidney function status. Climacteric : J Int Menopause Soc 17:273–284

    Article  CAS  Google Scholar 

  132. Yamamoto J, Nakazawa D, Nishio S et al (2020) Impact of Weekly Teriparatide on the Bone and Mineral Metabolism in Hemodialysis Patients With Relatively Low Serum Parathyroid Hormone: A Pilot Study. Ther Apheresis Dial: Off Peer-Rev J Int Soc Apheresis Jpn Soc Apheresis Jpn Soc Dial Ther 24:146–153

    Article  CAS  Google Scholar 

  133. Palcu P, Dion N, Ste-Marie LG, Goltzman D, Radziunas I, Miller PD, Jamal SA (2015) Teriparatide and bone turnover and formation in a hemodialysis patient with low-turnover bone disease: a case report. Am J Kidney Dis 65:933–936

    Article  CAS  PubMed  Google Scholar 

  134. Sumida K, Ubara Y, Hoshino J et al (2016) Once-weekly teriparatide in hemodialysis patients with hypoparathyroidism and low bone mass: a prospective study. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 27:1441–1450

    Article  CAS  Google Scholar 

  135. Cejka D, Kodras K, Bader T, Haas M (2010) Treatment of Hemodialysis-Associated Adynamic Bone Disease with Teriparatide (PTH1-34): A Pilot Study. Kidney Blood Press Res 33:221–226

    Article  CAS  PubMed  Google Scholar 

  136. Miller PD, Schwartz EN, Chen P, Misurski DA, Krege JH (2007) Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 18:59–68

    Article  CAS  Google Scholar 

  137. Bilezikian JP, Hattersley G, Mitlak BH, Hu MY, Fitzpatrick LA, Dabrowski C, Miller PD, Papapoulos SE (2019) Abaloparatide in patients with mild or moderate renal impairment: results from the ACTIVE phase 3 trial. Curr Med Res Opin 35:2097–2102

    Article  CAS  PubMed  Google Scholar 

  138. Hara T, Hijikata Y, Matsubara Y, Watanabe N (2021) Pharmacological interventions versus placebo, no treatment or usual care for osteoporosis in people with chronic kidney disease stages 3–5D. Cochrane Database Syst Rev 7:Cd013424

    PubMed  Google Scholar 

  139. Sato M, Inaba M, Yamada S, Emoto M, Ohno Y, Tsujimoto Y (2021) Efficacy of romosozumab in patients with osteoporosis on maintenance hemodialysis in Japan; an observational study. J Bone Miner Metab 39:1082–1090

    Article  CAS  PubMed  Google Scholar 

  140. Brandenburg VM, Verhulst A, Babler A, D’Haese PC, Evenepoel P, Kaesler N (2019) Sclerostin in chronic kidney disease-mineral bone disorder think first before you block it! Nephrol Dial Transplant: Off Publ Eur Dial Transplant Assoc-Eur Renal Assoc 34:408–414

    Article  CAS  Google Scholar 

  141. Asadipooya K, Weinstock A (2019) Cardiovascular Outcomes of Romosozumab and Protective Role of Alendronate. Arterioscler Thromb Vasc Biol 39:1343–1350

    Article  CAS  PubMed  Google Scholar 

  142. Schini M, Peel N, Toronjo-Urquiza L, Thomas E, Salam S, Khwaja A, Eastell R, Walsh JS (2021) Evaluation of estimated glomerular function (eGFR) versus creatinine clearance (CrCl) to predict acute kidney injury when using zoledronate for the treatment of osteoporosis. Osteoporos Int: J Established Result Coop Between Eur Found Osteoporos Natl Osteoporos Found USA

  143. Khairallah P, Nickolas TL (2021) Bisphosphonates in Kidney Disease-Safety First. J Bone Miner Res: Off J Am Soc Bone Miner Res 36:817–819

    Article  CAS  Google Scholar 

  144. Haarhaus M, Evenepoel P (2021) Differentiating the causes of adynamic bone in advanced chronic kidney disease informs osteoporosis treatment. Kidney Int 100:546–558

    Article  CAS  PubMed  Google Scholar 

  145. Lerman DA, Prasad S, Alotti N (2016) Denosumab could be a Potential Inhibitor of Valvular Interstitial Cells Calcification in vitro. Int J Cardiovasc Res 5:

  146. Pawade TA, Doris MK, Bing R et al (2021) Effect of Denosumab or Alendronic Acid on the Progression of Aortic Stenosis: A Double-Blind Randomized Controlled Trial. Circulation 143:2418–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Samelson EJ, Miller PD, Christiansen C et al (2014) RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J Bone Miner Res 29:450–457

    Article  CAS  PubMed  Google Scholar 

  148. Wang SX, Li H (2008) Salmon calcitonin in prevention of osteoporosis in maintenance dialysis patients. Chin Med J 121:1280–1284

    Article  CAS  PubMed  Google Scholar 

  149. Newman CL, Creecy A, Granke M et al (2016) Raloxifene improves skeletal properties in an animal model of cystic chronic kidney disease. Kidney Int 89:95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wilson LM, Rebholz CM, Jirru E, Liu MC, Zhang A, Gayleard J, Chu Y, Robinson KA (2017) Benefits and Harms of Osteoporosis Medications in Patients With Chronic Kidney Disease: A Systematic Review and Meta-analysis. Ann Intern Med 166:649–658

    Article  PubMed  Google Scholar 

  151. Aleksova J, Rodriguez AJ, McLachlan R, Kerr P, Milat F, Ebeling PR (2018) Gonadal Hormones in the Pathogenesis and Treatment of Bone Health in Patients with Chronic Kidney Disease: a Systematic Review and Meta-Analysis. Curr Osteoporos Rep 16:674–692

    Article  PubMed  Google Scholar 

  152. El-Husseini A, Sobh M, Elshabrawy N, Abdalbary M (2021) Antiresorptives in patients with chronic kidney disease with adynamic bone: Is absence of evidence of harm equal to no harm? Kidney Int 100:1341–1342

    Article  CAS  PubMed  Google Scholar 

  153. Miller P, Adachi J, Albergaria BH et al (2020) OP0297 Efficacy and safety of romosozumab among postmenopausal women with osteoporosis and mild-to-moderate chronic kidney disease. Ann Rheum Dis 79:185–185

    Article  Google Scholar 

  154. Sato M, Inaba M, Yamada S, Emoto M, Ohno Y, Tsujimoto Y (2021) Efficacy of romosozumab in patients with osteoporosis on maintenance hemodialysis in Japan; an observational study. J Bone Miner Metab

  155. Salvarani C, Dolci G, Massari M et al (2021) Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Intern Med 181:24–31

    Article  CAS  PubMed  Google Scholar 

  156. Shankar-Hari M, Vale CL, Godolphin PJ et al (2021) Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA 326:499–518

    Article  CAS  PubMed  Google Scholar 

  157. Kakani E, Sloan D, Sawaya BP, El-Husseini A, Malluche HH, Rao M (2019) Long-term outcomes and management considerations after parathyroidectomy in the dialysis patient. Semin Dial 32:541–552

    Article  PubMed  Google Scholar 

  158. Marcén R, Caballero C, Pascual J et al (2006) Lumbar bone mineral density in renal transplant patients on neoral and tacrolimus: a four-year prospective study. Transplantation 81:826–831

    Article  PubMed  Google Scholar 

  159. Iseri K, Carrero JJ, Evans M, Felländer-Tsai L, Berg HE, Runesson B, Stenvinkel P, Lindholm B, Qureshi AR (2020) Fractures after kidney transplantation: Incidence, predictors, and association with mortality. Bone 140:115554

    Article  PubMed  Google Scholar 

  160. Nikkel LE, Hollenbeak CS, Fox EJ, Uemura T, Ghahramani N (2009) Risk of fractures after renal transplantation in the United States. Transplantation 87:1846–1851

    Article  PubMed  Google Scholar 

  161. Jørgensen HS, Behets G, Bammens B, Claes K, Meijers B, Naesens M, Sprangers B, Kuypers DRJ, D'Haese P, Evenepoel P (2021) Patterns of renal osteodystrophy one year after kidney transplantation. Nephrol Dial Transplant

  162. Yanishi M, Kinoshita H, Tsukaguchi H, Kimura Y, Koito Y, Sugi M, Matsuda T (2018) Factors Related to Osteosarcopenia in Kidney Transplant Recipients. Transplant Proc 50:3371–3375

    Article  CAS  PubMed  Google Scholar 

  163. Adami G, Saag KG (2019) Glucocorticoid-induced osteoporosis: 2019 concise clinical review. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 30:1145–1156

    Article  CAS  Google Scholar 

  164. Coco M, Pullman J, Cohen HW, Lee S, Shapiro C, Solorzano C, Greenstein S, Glicklich D (2012) Effect of risedronate on bone in renal transplant recipients. J Am Soc Nephrol 23:1426–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Marques IDB, Araújo M, Graciolli FG et al (2019) A Randomized Trial of Zoledronic Acid to Prevent Bone Loss in the First Year after Kidney Transplantation. J Am Soc Nephrol 30:355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Song SH, Choi HY, Kim HY, Nam CM, Jeong HJ, Kim MS, Kim SII, Kim YS, Huh KH, Kim BS (2021) Effects of bisphosphonates on long-term kidney transplantation outcomes. Nephrol Dial Transplant 36:722–729

    Article  CAS  PubMed  Google Scholar 

  167. Cianciolo G, Tondolo F, Barbuto S, Iacovella F, Zavatta G, Altieri P, Grandinetti V, Comai G, Cozzolino M, La Manna G (2021) Denosumab-Induced Hypocalcemia and Hyperparathyroidism in de novo Kidney Transplant Recipients. Am J Nephrol 1–9

  168. Bonani M, Frey D, de Rougemont O, Mueller NJ, Mueller TF, Graf N, Wüthrich RP (2017) Infections in De Novo Kidney Transplant Recipients Treated With the RANKL Inhibitor Denosumab. Transplantation 101:2139–2145

    Article  CAS  PubMed  Google Scholar 

  169. Cejka D, Benesch T, Krestan C, Roschger P, Klaushofer K, Pietschmann P, Haas M (2008) Effect of teriparatide on early bone loss after kidney transplantation. Am J Transplant 8:1864–1870

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El-Husseini.

Ethics declarations

Ethics approval

Mohamed Abdalbary, Mahmoud Sobh, Sherouk Elnagar, Muhammed A. Elhadedy, Nehal Elshabrawy, Mostafa Abdelsalam, Kamyar Asadipooya, Alaa Sabry, Ahmed Halawa, and Amr El-Husseini have no ethical conflicts to disclose.

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalbary, M., Sobh, M., Elnagar, S. et al. Management of osteoporosis in patients with chronic kidney disease. Osteoporos Int 33, 2259–2274 (2022). https://doi.org/10.1007/s00198-022-06462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06462-3

Keywords

Navigation