Skip to main content

Advertisement

Log in

Loss of bone density and bone strength following premenopausal risk–reducing bilateral salpingo-oophorectomy: a prospective controlled study (WHAM Study)

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Prophylactic oophorectomy is recommended for women at high risk for ovarian cancer, but the associated impact on bone health is of clinical concern. This prospective, controlled study demonstrated substantial loss of bone density and bone strength following surgical menopause. Postoperative hormone therapy alleviated, but not fully prevented, spinal bone loss.

Introduction

This prospective study investigated bone health in women following premenopausal oophorectomy.

Methods

Dual-energy x-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), and pQCT-based finite element analysis (pQCT-FEA) were used to assess bone health between systemic hormone therapy (HT) users and non-users after premenopausal risk-reducing bilateral salpingo-oophorectomy (RRBSO) compared with premenopausal controls over 24-month follow-up.

Results

Mean age was 42.4 ± 2.6 years (n = 30) for the surgery group and 40.2 ± 6.3 years for controls (n = 42), and baseline bone measures were similar between groups. Compromised bone variables were observed at 24 months after RRBSO, among which areal bone mineral density (aBMD) at the lumbar spine, tibial volumetric cortical density (Crt vBMD), and tibial bending stiffness (kbend) had decreased by 4.7%, 1.0%, and 12.1%, respectively (all p < 0.01). In non-HT users, significant losses in lumbar spine (5.8%), total hip (5.2%), femoral neck (6.0%) aBMD, tibial Crt vBMD (2.3%), and kbend (14.8%) were observed at 24 months (all p < 0.01). HT prevented losses in kbend, tibial Crt vBMD, and aBMD, except for modest 2.3% loss at the lumbar spine (p = 0.01).

Conclusion

This prospective, controlled study of bone health following RRBSO or premenopausal oophorectomy demonstrated substantial loss of bone density and bone strength following RRBSO. HT prevented loss of bone density and bone stiffness, although there was still a modest decrease in lumbar spine aBMD in HT users. These findings may inform decision-making about RRBSO and clinical management following premenopausal oophorectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Whittemore AS, Gong G, John EM, McGuire V, Li FP, Ostrow KL, Dicioccio R, Felberg A, West DW (2004) Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic whites. Cancer Epidemiol Biomark Prev 13(12):2078–2083

    CAS  Google Scholar 

  2. Lewis KE, Lu KH, Klimczak AM, Mok SC (2018) Recommendations and choices for BRCA mutation carriers at risk for ovarian cancer: a complicated decision. Cancers 10(2):57

    PubMed Central  Google Scholar 

  3. Metcalfe KA, Birenbaum-Carmeli D, Lubinski J, Gronwald J, Lynch H, Moller P, Ghadirian P, Foulkes WD, Klijin J, Friedman E, Kim-Sing C, Ainsworth P, Rosen B, Domchek S, Wagner T, Tung N, Manoukian S, Couch F, Sun P, Narod SA, Heredity Breast Cancer Clinical Study Group (2008) Interventional variation in rates of uptake of preventive options in BRCA1 and BRCA2 mutation carriers. Int J Cancer 122(9):2017–2022

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Li J-Y, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, Jones RM, Pacifici R (2016) Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 126(6):2049–2063

    PubMed  PubMed Central  Google Scholar 

  5. Rocca WA, Shuster LT, Grossardt BR, Maraganore DM, Geda YE, Melton LJ III (2009) Long-term effects of bilateral oophorectomy on brain aging: unanswered questions from the Mayo Clinic cohort study of oophorectomy and aging. Women's Health (Lond Engl) 5(1):39–48

    Google Scholar 

  6. Vermeulen RFM, van Beurden M, Korse CM, Kenter GG (2017) Impact of risk-reducing salpingo-oophorectomy in premenopausal women. Climacteric 20(3):212–221

    CAS  PubMed  Google Scholar 

  7. Fakkert IE, Teixeira N, Abma EM, Slart RHJA, Mourits MJE, de Bock GH (2017) Bone mineral density and fractures after surgical menopause: systematic review and meta-analysis. BJOG 124:1525–1535

    CAS  PubMed  Google Scholar 

  8. Sidon L, Ingham S, Clancy T, Clayton R, Clarke A, Jones EA, Lalloo F, Evans DG (2012) Uptake of risk-reducing salpingo-oophorectomy in women carrying a BRCA1 or BRCA2 mutation: evidence for lower uptake in women affected by breast cancer and older women. Br J Cancer 106(4):775–779

    CAS  PubMed  Google Scholar 

  9. Hibler E, Kauderer J, Greene MH, Rodriguez GC, Alberts DS (2016) Bone loss following oophorectomy among high-risk women: an NRG oncology/gynecologic oncology group study. Menopause 23(11):1228–1232

    PubMed  PubMed Central  Google Scholar 

  10. Kotsopoulos J, Hall E, Finch A, Hu H, Murphy J, Rosen B, Narod SA, Cheung AM (2019) Changes in bone mineral density after prophylactic bilateral salpingo-oophorectomy in carriers of a BCRA mutation. JAMA Netw Open 2(8):e198420

    PubMed  PubMed Central  Google Scholar 

  11. Cohen JV, Chiel L, Boghossian L, Jones M, Stopfer JE, Powers J, Rebbeck TR, Nathanson KL, Domchek SM (2012) Non-cancer endpoints in BRCA1/2 carriers after risk-reducing salpingo-oophorectomy. Familial Cancer 11(1):69–75

    CAS  PubMed  Google Scholar 

  12. Challberg J, Ashcroft L, Lalloo F, Eckersley B, Clayton R, Hopwood P, Selby P, Howell A, Evans DG (2011) Menopausal symptoms and bone health in women undertaking risk reducing bilateral salpingo-oophorectomy: significant bone health issues in those not taking HRT. Br J Cancer 105(1):22–27

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fakkert IE, Abma EM, Westrik IG, Lefrandt JD, Wolffenbuttel BH, Oosterwijk JC, Slart RH, van der Veer E, de Bock GH, Mourits MJ (2015) Bone mineral density and fractures after risk-reducing salpingo-oophorectomy in women at increased risk for breast and ovarian cancer. Eur J Cancer 51(3):400–408

    PubMed  Google Scholar 

  14. Prior JC, Vigna YM, Wark JD, Eyre DR, Lentle BC, Li DK, Ebeling PR, Atley L (1997) Premenopausal ovariectomy-related bone loss: a randomized, double-blind one-year trial of conjugated estrogen or medroxyprogesterone acetate. J Bone Miner Res 12(11):1851–1863

    CAS  PubMed  Google Scholar 

  15. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia C, Lyon L, Conell C, Littell RD, Powell CB (2015) Osteoporosis risk and management in BRCA1 and BRCA2 carriers who undergo risk-reducing salpingo-oophorectomy. Gynecol Oncol 138(3):723–726

    CAS  PubMed  Google Scholar 

  17. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286(22):2815–2822

    CAS  PubMed  Google Scholar 

  18. Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E (2009) FRAX® and its applications to clinical practice. Bone 44:734–743

    PubMed  Google Scholar 

  19. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2008) Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int 19(10):1431–1444

    CAS  PubMed  Google Scholar 

  20. Jiang H, Robinson DL, McDonald M, Lee PVS, Kontulainen SA, Johnston JD, Yates CJ, Wark JD (2019) Predicting experimentally-derived failure load at the distal radius using finite element modelling based on peripheral quantitative computed tomography cross sections (pQCT-FE): a validation study. Bone 129:115051

    PubMed  Google Scholar 

  21. Robinson DL, Jiang H, Song Q, Yates C, Lee PVS, Wark JD (2019) The application of finite element modelling based on clinical pQCT for classification of fracture status. Biomech Model Mechanobiol 18(1):245–260

    PubMed  Google Scholar 

  22. Jiang H, Robinson DL, Yates CJ, Lee PVS, Wark JD (2020) Peripheral quantitative computed tomography (pQCT)-based finite element analysis provides enhanced diagnostic performance in identifying non-vertebral fracture patients compared with dual energy X-ray absorptiometry. Osteoporos Int 31(1):141–151

    CAS  PubMed  Google Scholar 

  23. Hickey M, Trainer A, Braat S, Davey M-A, Krejany E, Wark J (2017) What happens after menopause? (WHAM): protocol for a prospective, multicentre, age-matched cohort trial of risk-reducing bilateral salpingo-oophorectomy in high-risk premenopausal women. BMJ Open 7(11):e018758

    PubMed  PubMed Central  Google Scholar 

  24. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36(7):894–904

    Google Scholar 

  25. Doube M, Klosowski M, Arganda-Carreras I, Cordelieres FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47(6):1076–1079

    PubMed  PubMed Central  Google Scholar 

  26. Collaborative Group on Hormonal Factors in Breast Cancer (2019) Type and timing of menopausal hormone therapy and breast cancer risk: individual participant meta-analysis of the worldwide epidemiological evidence. Lancet 394:1159–1168

    PubMed Central  Google Scholar 

  27. Faubion SS, Kuhle CL, Shuster LT, Rocca WA (2015) Long-term health consequences of premature or early menopause and considerations for management. Climacteric. 18:483–491

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rebbeck TR, Friebel T, Wagner T, Lynch HT, Garber JE, Daly MB, Isaacs C, Olopade OI, Neuhausen SL, van’t Veer L, Eeles R, Evans DG, Tomlinson G, Matloff E, Narod SA, Eisen A, Domchek S, Armstrong K, Weber BL, PROSE Study Group (2005) Effect of short-term hormone replacement therapy on breast cancer risk reduction after bilateral prophylactic oophorectomy in BRCA1 and BRCA2 mutation carriers: the PROSE study group. J Clin Oncol 23:7804–7810

    CAS  PubMed  Google Scholar 

  29. Li Z, Kuhn G, Schirmer M, Muller R, Ruffoni D (2017) Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography. PLoS One 12(9):e0184835

    PubMed  PubMed Central  Google Scholar 

  30. Kawalilak CE, Johnston JD, Olszynski WP, Kontulainen SA (2014) Characterizing microarchitectural changes at the distal radius and tibia in postmenopausal women using HR-pQCT. Osteoporos Int 25(8):2057–2066

    CAS  PubMed  Google Scholar 

  31. Bjornerem A, Wang X, Bui M, Ghasem-Zadeh A, Hopper JL, Zebaze R, Seeman E (2018) Menopause-related appendicular bone loss is mainly cortical and results in increased cortical porosity. J Bone Miner Res 33(4):598–605

    CAS  PubMed  Google Scholar 

  32. Boughton OR, Ma S, Cai X, Yan L, Peralta L, Laugier P, Marrow J, Giuliani F, Hansen U, Abel RL, Grimal Q, Cobb JP (2019) Computed tomography porosity and spherical indentation for determining cortical bone millimetre-scale mechanical properties. Sci Rep 9:7416

    PubMed  PubMed Central  Google Scholar 

  33. Misof BM, Patsch JM, Roschger P, Muschitz C, Gamsjaeger S, Paschalis EP, Prokop E, Klaushofer K, Pietschmann P, Resch H (2014) Intravenous treatment with ibandronate normalizes bone matrix mineralization and reduces cortical porosity after two years in male osteoporosis: a paired biopsy study. J Bone Miner Res 29(2):440–449

    CAS  PubMed  Google Scholar 

  34. Weatherholt AM, Avin KG, Hurd AL, Cox JL, Marberry ST, Santoni BG, Warden SJ (2016) Peripheral quantitative computed tomography (pQCT) predicts humeral diaphysis torsional mechanical properties with good short-term precision. J Clin Densitom 18(4):551–559

    Google Scholar 

  35. Vilayphiou N, Boutroy S, Szulc P, van Rietbergen B, Munoz F, Delmas PD, Chapurlat R (2011) Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res 26(5):965–973

    PubMed  Google Scholar 

  36. Vermeulen RFM, Korse CM, Kenter GG, Brood-van Zanten MMA, van Beurden M (2019) Safety of hormone replacement therapy following risk-reducing salpingo-oophorectomy: systematic review of literature and guideline. Climacteric 22(4):352–360

    CAS  PubMed  Google Scholar 

  37. Vermeulen RFM, Beurden MV, Kieffer JM, Bleiker EMA, Valdimarsdottir HB, Massuger LFAG, Mourits MJE, Gaarenstroom KN, van Dorst EBL, van der Putten HWHM, Aaronson NK (2017) Hormone replacement therapy after risk-reducing salpingo-oophorectomy minimises endocrine and sexual problems: a prospective study. Eur J Cancer 84:159–167

    CAS  PubMed  Google Scholar 

  38. Chan JL, Senapati S, Johnson LNC, DiGiovanni L, Voong C, Butts SF, Domchek SM (2019) Risk factors for sexual dysfunction in BRCA mutation carriers after risk-reducing salpingo-oophorectomy. Menopause 26(2):132–139

    PubMed  PubMed Central  Google Scholar 

  39. Sullivan SD, Sarrel PM, Nelson LM (2016) Hormone replacement therapy in young women with primary ovarian insufficiency and early menopause. Fertil Steril 106(7):1588–1599

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bahar S, Abali R, Guzel S, Bozkurt S, Guzel EC, Aral H, Boran AB (2011) Comparison of the acute alterations in serum bone turnover markers and bone mineral density among women with surgical menopause. Eur J Obstet Gynecol Reprod Biol 159(1):194–197

    PubMed  Google Scholar 

  41. Fakkert IE, van der Veer E, Abma EM, Lefrandt JD, Wolffenbuttel BHR, Oosterwijk JC, Slart RHJA, Westrik IG, de Bock GH, Mourits MJE (2017) Elevated bone turnover markers after risk-reducing salpingo-oophorectomy in women at increased risk for breast and ovarian cancer. PLoS One 12(1):e0169673

    PubMed  PubMed Central  Google Scholar 

  42. Peris P, Alvarez L, Monegal A, GuaNabens N, Duran M, Pons F, Martinez de Osaba MJ, Echevarria M, Ballesta AM, Munoz-Gomez J (1999) Biochemical markers of bone turnover after surgical menopause and hormone replacement therapy. Bone 25(3):349–353

    CAS  PubMed  Google Scholar 

  43. Lips P, van Schoor NM (2011) The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab 25(4):585–591

    CAS  PubMed  Google Scholar 

  44. Callegari ET, Garland SM, Gorelik A, Wark JD (2017) Determinants of bone mineral density in young Australian women; results from the safe-D study. Osteoporos Int 28:2619–2631

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all study participants for their contribution to this study. We wish to acknowledge Dr. Ashwini Kale for performing DXA and pQCT scans. We thank Dr. Gillian Mitchell, Associate Professor Bettina Meiser, and Dr. Mary-Ann Davey for their contributions in the design of the WHAM study.

Funding

MH is funded by an Australian Government National Health and Medical Research Council (NHMRC) Practitioner Fellowship (reference: APP1058935). The study was funded by NHMRC Project Grant to MH and JDW (reference: APP1048023). HJ was funded by a joint PhD scholarship by China Scholarship Council (reference: CSC201608240003) and the University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Wark.

Ethics declarations

The study was conducted in accordance with the Declaration of Helsinki. Ethics approval was obtained from the respective human research ethics committee at the Royal Melbourne Hospital (ethics reference: MH2013.060), the Royal Women’s Hospital, Melbourne (ethics reference: RWH12/50), and the Peter MacCallum Cancer Centre (ethics reference: HREC/12/PMCC/24).

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Professor Martha Hickey is joint senior author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Robinson, D.L., Lee, P.V.S. et al. Loss of bone density and bone strength following premenopausal risk–reducing bilateral salpingo-oophorectomy: a prospective controlled study (WHAM Study). Osteoporos Int 32, 101–112 (2021). https://doi.org/10.1007/s00198-020-05608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05608-5

Keywords

Navigation