Skip to main content

Advertisement

Log in

Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Bone fractures in older adults are often preceded by a loss of muscle mass and strength. Likewise, bone loss with prolonged bed rest, spinal cord injury, or with exposure to microgravity is also preceded by a rapid loss of muscle mass. Recent studies using animal models in the setting of hindlimb unloading or botulinum toxin (Botox) injection also reveal that muscle loss can induce bone loss. Moreover, muscle-derived factors such as irisin and leptin can inhibit bone loss with unloading, and knockout of catabolic factors in muscle such as the ubiquitin ligase Murf1 or the myokine myostatin can reduce osteoclastogenesis. These findings suggest that therapies targeting muscle in the setting of disuse atrophy may potentially attenuate bone loss, primarily by reducing bone resorption. These potential therapies not only include pharmacological approaches but also interventions such as whole-body vibration coupled with resistance exercise and functional electric stimulation of muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schoenau E, Frost HM (2002) The “muscle-bone unit” in children and adolescents. Calcif Tissue Int 70:405–407

    Article  PubMed  CAS  Google Scholar 

  2. Burr DB (1997) Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res 12:1547–1551

    Article  PubMed  CAS  Google Scholar 

  3. Bloomfield SA (1997) Changes in musculoskeletal structure and function with prolonged bed rest. Med Sci Sports Exerc 29:197–206

    Article  PubMed  CAS  Google Scholar 

  4. Reilly B, Franklin C (2016) Prevention of muscle wasting and osteoporosis: the value of examining novel animal models. J Exp Biol 219:2582–2595

    Article  PubMed  Google Scholar 

  5. Sato A, Richardson D, Cregor M, Davis HM, Au ED, McAndrews K, Zimmers TA, Organ JM, Peacock M, Plotkin LI, Bellido T (2017) Glucocorticoids induce muscle and bone atrophy by tissue-specific mechanisms upstream of E3 ubiquitin ligases. Endocrinology 158:664–677

    PubMed  PubMed Central  Google Scholar 

  6. Hamrick MW, McNeil PL, Patterson SL (2010) Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact 10(1):64–70

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Hamrick MW (2011) A role for myokines in muscle-bone interactions. Exerc Sport Sci Rev 39:43–47

    Article  PubMed  PubMed Central  Google Scholar 

  8. Karsenty G, Mera P (2017) Molecular bases of the crosstalk between bone and muscle. Bone. https://doi.org/10.1016/j.bone.2017.04.006

  9. Shen H, Grimston S, Civitelli R, Thomopoulos S (2015) Deletion of connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice. J Bone Miner Res 30:596–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. NIH Consensus Development Panel (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  11. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older People (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yu R, Leung J, Woo J (2014) Incremental predictive value of sarcopenia for incident fracture in an elderly Chinese cohort: results from the Osteoporotic Fractures in Men (MrOs) Study. J Am Med Dir Assoc 15:551–558

    Article  PubMed  Google Scholar 

  13. Steffl M, Bohannon RW, Sontakova L, Tufano JJ, Shiells K, Holmerova I (2017) Relationship between sarcopenia and physical activity in older people: a systematic review and meta-analysis. Clin Interv Aging 12:835–845

    Article  PubMed  PubMed Central  Google Scholar 

  14. Frisoli A Jr, Chaves PH, Ingham SJ, Fried LP (2011) Severe osteopenia and osteoporosis, sarcopenia, and frailty status in community-dwelling older women: results from the Women’s Health and Aging Study (WHAS) II. Bone 48:952–957

    Article  PubMed  Google Scholar 

  15. Yu R, Leung J, Woo J (2014) Sarcopenia combined with FRAX probabilities improves fracture risk prediction in older Chinese men. J Am Med Dir Assoc 15:918–923

    Article  PubMed  Google Scholar 

  16. Huo YR, Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Gunawardene P, Demontiero O, Duque G (2015) Comprehensive nutritional status in sarco-osteoporotic older fallers. J Nutr Health Aging 19:474–480

    Article  PubMed  CAS  Google Scholar 

  17. Verschueren S, Gielen E, O'Neill TW et al (2013) Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int 24:87–98

    Article  PubMed  CAS  Google Scholar 

  18. Kim S, Won CW, Kim BS, Choi HR, Moon MY (2014) The association between the low muscle mass and osteoporosis in elderly Korean people. J Korean Med Sci 29:995–1000

    Article  PubMed  PubMed Central  Google Scholar 

  19. Szulc P, Beck TJ, Marchand F, Delmas PD (2005) Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men—the MINOS study. J Bone Miner Res 20:721–729

    Article  PubMed  Google Scholar 

  20. Szulc P, Blaizot S, Boutroy S, Vilayphiou N, Boonen S, Chapurlat R (2013) Impaired bone microarchitecture at the distal radius in older men with low muscle mass and grip strength: the STRAMBO study. J Bone Miner Res 28:169–178

    Article  PubMed  Google Scholar 

  21. Binkley N, Buehring B (2009) Beyond FRAX: it’s time to consider “sarco-osteopenia”. J Clin Densitom 12:413–416

    Article  PubMed  Google Scholar 

  22. Hirschfeld HP, Kinsella R, Duque G (2017) Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int 28:2781–2790

    Article  PubMed  CAS  Google Scholar 

  23. Trappe S, Costill D, Gallagher P, Creer A, Peters JR, Evans H, Riley DA, Fitts RH (2009) Exercise in space: human skeletal muscle after 6 months aboard the International Space Station. J Appl Physiol 106:1159–1168

    Article  PubMed  Google Scholar 

  24. Tesch PA, Berg HE, Bring D, Evans HJ, LeBlanc AD (2005) Effects of 17-day spaceflight on knee extensor muscle function and size. Eur J Appl Physiol 93:463–468

    Article  PubMed  Google Scholar 

  25. LeBlanc A, Rowe R, Schneider V, Evans H, Hedrick T (1995) Regional muscle loss after short duration spaceflight. Aviat Space Environ Med 66:1151–1154

    PubMed  CAS  Google Scholar 

  26. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012

    Article  PubMed  Google Scholar 

  27. Lang TF, Leblanc AD, Evans HJ, Lu Y (2006) Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res 21:1224–1230

    Article  PubMed  Google Scholar 

  28. McCarthy EF (2011) Perspective: skeletal complications of space flight. Skelet Radiol 40:661–663

    Article  Google Scholar 

  29. Ferrando AA, Stuart CA, Brunder DG, Hillman GR (1995) Magnetic resonance imaging quantitation of changes in muscle volume during 7 days of strict bed rest. Aviat Space Environ Med 66:976–981

    PubMed  CAS  Google Scholar 

  30. Krasnoff J, Painter P (1999) The physiological consequences of bed rest and inactivity. Adv Ren Replace Ther 6:124–132

    Article  PubMed  CAS  Google Scholar 

  31. Morgan JL, Zwart SR, Heer M, Ploutz-Snyder R, Ericson K, Smith SM (2012) Bone metabolism and nutritional status during 30-day head-down-tilt bed rest. J Appl Physiol 113:1519–1529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lloyd SA, Lang CH, Zhang Y, Paul EM, Laufenberg LJ, Lewis GS, Donahue HJ (2014) Interdependence of muscle atrophy and bone loss induced by mechanical unloading. J Bone Miner Res 29:1118–1130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Keyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF (2009) Reduction in proximal femoral strength due to long-duration spaceflight. Bone 44:449–453

    Article  PubMed  CAS  Google Scholar 

  34. Pedersen BK (2011) Muscles and their myokines. J Exp Biol 214:337–346

    Article  PubMed  CAS  Google Scholar 

  35. Pedersen BK, Fischer CP (2007) Beneficial health effects of exercise—the role of IL-6 as a myokine. Trends Pharmacol Sci 28:152–156

    Article  PubMed  CAS  Google Scholar 

  36. Qin W, Bauman WA, Cardozo C (2010) Bone and muscle loss after spinal cord injury: organ interactions. Ann NY Acad Sci 1211:66–84

    Article  PubMed  Google Scholar 

  37. Dudley-Javoroski S, Shields RK (2008) Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehab Res Dev 45:283–296

    Article  Google Scholar 

  38. Biering-Sorensen B, Kristensen IB, Kjaer M, Biering-Sorensen F (2009) Muscle after spinal cord injury. Muscle Nerve 40:499–519

    Article  PubMed  CAS  Google Scholar 

  39. Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192

    Article  PubMed  Google Scholar 

  40. Warden SJ, Bennell KL, Matthews B, Brown DJ, McMeeken JM, Wark JD (2002) Quantitative ultrasound assessment of acute bone loss following spinal cord injury: a longitudinal pilot study. Osteoporos Int 13:586–592

    Article  PubMed  CAS  Google Scholar 

  41. Garland DE, Adkins RH, Kushwaha V, Stewart C (2004) Risk factors for osteoporosis at the knee in the spinal cord injury population. J Spinal Cord Med 27:202–206

    Article  PubMed  Google Scholar 

  42. Bauman WA, Spungen AM, Wang J, Pierson RN Jr, Schwartz E (2006) Relationship of fat mass and serum estradiol with lower extremity bone in persons with chronic spinal cord injury. Am J Physiol Endocrinol Metab 290:E1098–E1103

    Article  PubMed  CAS  Google Scholar 

  43. Shields RK, Dudley-Javoroski S (2006) Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training. J Neurophysiol 95:2380–2390

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shields RK, Dudley-Javoroski S, Law LA (2006) Electrically induced muscle contractions influence bone density decline after spinal cord injury. Spine 31:548–553

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dudley-Javoroski S, Shields RK (2008) Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury. J Musculoskelet Neuronal Interact 8:227–238

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Qin W, Sun L, Cao J, Peng Y, Collier L, Wu Y, Creasey G, Li J, Qin Y, Jarvis J, Bauman WA, Zaidi M, Cardozo C (2013) The central nervous system (CNS)-independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures. J Biol Chem 288:13511–13521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bauman WA, Adkins RH, Spungen AM, Waters RL (1999) The effect of residual neurological deficit on oral glucose tolerance in persons with chronic spinal cord injury. Spinal Cord 37:765–771

    Article  PubMed  CAS  Google Scholar 

  48. Bauman WA, Spungen AM (1994) Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism 43:749–756

    Article  PubMed  CAS  Google Scholar 

  49. Tsitouras PD, Zhong YG, Spungen AM, Bauman WA (1995) Serum testosterone and growth hormone/insulin like growth factor-1 in adults with spinal cord injury. Horm Metab Res 27:287–292

    Article  PubMed  CAS  Google Scholar 

  50. Ellman R, Grasso DJ, van Vliet M, Brooks DJ, Spatz JM, Conlon C, Bouxsein ML (2014) Combined effects of botulinum toxin injection and hindlimb unloading on bone and muscle. Calcif Tissue Int 94:327–337. https://doi.org/10.1007/s00223-013-9814-7

    Article  PubMed  CAS  Google Scholar 

  51. Hanson A, Harrison B, Young M, Stodieck L, Ferguson V (2013) Longitudinal characterization of functional, morphologic, and biochemical adaptations in mouse skeletal muscle with hindlimb suspension. Muscle Nerve 498:393–402

    Article  Google Scholar 

  52. Lloyd SA, Lewis GS, Zhang Y, Paul EM, Donahue HJ (2012) Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading. J Bone Miner Res 27:2359–2372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lu TW, Taylor SJ, O'Connor JJ, Walker PS (1997) Influence of muscle activity on the forces in the femur: an in vivo study. J Biomech 30:1101–1106

    Article  PubMed  CAS  Google Scholar 

  54. Novotny SA, Warren GL, Hamrick MW (2015) Aging and the muscle-bone relationship. Physiology 30:8–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Warner SE, Sanford DA, Becker BA, Bain SD, Srinivasan S, Gross TS (2006) Botox induced muscle paralysis rapidly degrades bone. Bone 38:257–264

    Article  PubMed  CAS  Google Scholar 

  56. Gross TS, Poliachik SL, Prasad J, Bain SD (2010) The effect of muscle dysfunction on bone mass and morphology. J Musculoskelet Neuronal Interact 10:25–34

    PubMed  CAS  Google Scholar 

  57. Warden SJ, Galley MR, Richard JS, George LA, Dirks RC, Guildenbecher EA, Judd AM, Robling AG, Fuchs RK (2013) Reduced gravitational loading does not account for the skeletal effect of botulinum toxin-induced muscle inhibition suggesting a direct effect of muscle on bone. Bone 54:98–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Alzghoul M, Gerrard D, Watkins B, Hannon K (2004) Ectopic expression of IGF-1 and Shh by skeletal muscle inhibits disuse-mediated skeletal muscle atrophy and bone osteopenia in vivo. FASEB J 18:221–223

    Article  PubMed  CAS  Google Scholar 

  59. Ausk BJ, Huber P, Srinivasan S, Bain SD, Kwon RY, McNamara EA, Poliachik SL, Sybrowsky CL, Gross TS (2013) Metaphyseal and diaphyseal bone loss in the tibia following transient muscle paralysis are spatiotemporally distinct resorption events. Bone 57:413–422

    Article  PubMed  Google Scholar 

  60. Aliprantis AO, Stolina M, Kostenuik PJ, Poliachik SL, Warner SE, Bain SD, Gross TS (2012) Transient muscle paralysis degrades bone via rapid osteoclastogenesis. FASEB J 26:1110–1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cabahug-Zuckerman P, Frikha-Benayed D, Majeska RJ, Tuthill A, Yakar S, Judex S, Schaffler MB (2016) Osteocyte apoptosis caused by hindlimb unloading is required to trigger osteocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs. J Bone Miner Res 31:1356–1365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Adamopoulos IE, Bowman EP (2008) Immune regulation of bone loss by Th17 cells. Arthritis Res Ther 10:225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Colburn NT, Zaal KJ, Wang F, Tuan RS (2009) A role for gamma/delta T cells in a mouse model of fracture healing. Arthritis Rheum 60:1694–1703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309

    Article  PubMed  CAS  Google Scholar 

  65. Marchand-Libouban H, Le Drévo MA, Chappard D (2013) Disuse induced by botulinum toxin affects the bone marrow expression profile of bone genes leading to a rapid bone loss. J Musculoskelet Neuronal Interact 13:27–36

    PubMed  CAS  Google Scholar 

  66. Worton LE, Gardiner EM, Bain SD, Gross TS (2011) Transient muscle paralysis increases the osteoclastogenic differentiation potential of marrow. Orthop Res Abstract 231766

  67. Ausk BJ, Worton LE, Smigiel KS, Kwon RY, Bain SD, Srinivasan S, Gardiner EM, Gross TS (2017) Muscle paralysis induces bone marrow inflammation and predisposition to formation of giant osteoclasts. Am J Physiol Cell Physiol 313:C533–C540

    Article  PubMed  Google Scholar 

  68. Grimston S, Goldberg D, Watkins M et al (2011) Connexin43 deficiency reduces the sensitivity of cortical bone to the effects of muscle paralysis. J Bone Miner Res 26:2151–2160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Maurel D, Duan P, Farr J et al (2016) Beta-catenin haplo insufficient male mice do not lose bone in response to hindlimb unloading. PLoS One 11:e0158381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sankaran J, Li B, Donahue LR, Judex S (2016) Modulation of unloading-induced bone loss in mice with altered ERK signaling. Mamm Genome 27:47–61

    Article  PubMed  CAS  Google Scholar 

  71. Gerbaix M, Vico L, Ferrari SL, Bonnet S (2015) Periostin expression contributes to cortical bone loss during unloading. Bone 71:94–100

    Article  PubMed  CAS  Google Scholar 

  72. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, Lu P, Sartini L, Di Comite M, Mori G, Di Benedetto A, Brunetti G, Yuen T, Sun L, Reseland JE, Colucci S, New MI, Zaidi M, Cinti S, Grano M (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A 112:12157–12162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, Notarnicola A, Severi I, Passeri G, Mori G, Brunetti G, Moretti B, Tarantino U, Colucci SC, Reseland JE, Vettor R, Cinti S, Grano M (2017) Irisin prevents and restores bone loss and muscle atrophy in hindlimb suspended mice. Sci Rep 7:2811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kawao N, Moritake A, Tatsumi K, Kaji H (2018) Roles of irisin in the linkage from muscle to bone during mechanical unloading in mice. Calcif Tissue Int. https://doi.org/10.1007/s00223-018-0387-3

  75. Dankbar B, Fennen M, Brunert D, Hayer S, Frank S, Wehmeyer C, Beckmann D, Paruzel P, Bertrand J, Redlich K, Koers-Wunrau C, Stratis A, Korb-Pap A, Pap T (2015) Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med 21:1085–1090

    Article  PubMed  CAS  Google Scholar 

  76. Hamrick MW, Shi X, Zhang W, Pennington C, Thakore H, Haque M, Kang B, Isales CM, Fulzele S, Wenger KH (2007) Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone 40:1544–1553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kawao N, Morita H, Obata K, Tatsumi K, Kaji H et al (2018) Role of follistatin in muscle and bone alterations induced by gravity change in mice. J Cell Physiol 233:1191–1201

    Article  PubMed  CAS  Google Scholar 

  78. Kondo H, Ezura Y, Nakamoto T, Hayata T, Notomi T, Sorimachi H, Takeda S, Noda M (2011) Murf1 deficiency suppresses unloading-induced effects on osteoblasts and osteoclasts to lead to bone loss. J Cell Biochem 112:3525–3530

    Article  PubMed  CAS  Google Scholar 

  79. Hamrick MW (2017) Role of the cytokine-like hormone leptin in muscle-bone crosstalk with aging. J Bone Metab 24:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  80. Baek K, Bloomfield SA (2009) Beta-adrenergic blockade and leptin replacement effectively mitigate disuse bone loss. J Bone Miner Res 24:792–799

    Article  PubMed  CAS  Google Scholar 

  81. Muir J, Judex S, Qin Y, Rubin C (2011) Postural instability caused by extended bed rest is alleviated by brief daily exposure to low magnitude mechanical signals. Gait Posture 33:429–435

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lau RW, Liao LR, Yu F, Teo T, Chung RC, Pang M (2011) The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: a systematic review and meta-analysis. Clin Rehabil 25:975–988

    Article  PubMed  Google Scholar 

  83. Salanova M, Gelfi, Miriggi M et al (2014) Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration: evidence from structural and proteomic analysis. FASAB J 28:4748–4763

    Article  CAS  Google Scholar 

  84. Trudel G, Coletta E, Cameron I, Belavý DL, Lecompte M, Armbrecht G, Felsenberg D, Uhthoff HK (2012) Resistive exercises, with or without whole body vibration, prevent vertebral marrow fat accumulation during 60 days of head-down tilt bed rest in men. J Appl Physiol 112:1824–1831

    Article  PubMed  Google Scholar 

  85. Belavy D, Beller G, Ritter Z, Felsenberg D (2011) Bone structure and density via HR-pQCT in 60 d bed rest, 2 years recovery with and without countermeasures. J Musculoskelet Neuronal Interact 11:215–226

    PubMed  CAS  Google Scholar 

  86. Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR (2012) Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res 27:1896–1906

    Article  PubMed  CAS  Google Scholar 

  87. Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, Hochberg MC, Ferrari SL, Blain H, Binder EF, Rolland Y, Poiraudeau S, Benson CT, Myers SL, Hu L, Ahmad QI, Pacuch KR, Gomez EV, Benichou O, STEADY Group (2015) Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3:948–957

    Article  PubMed  CAS  Google Scholar 

  88. Cohen S, Nathan J, Goldberg A (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14:58–74

    Article  PubMed  CAS  Google Scholar 

  89. Girgis C, Mokbel N, DiGirolamo (2014) Therapies for musculoskeletal disease: can we treat two birds with one stone? Curr Osteop Rep 12:142–153

    Article  Google Scholar 

  90. Laurent M, Jardi F, Dubois V et al (2016) Androgens have antiresorptive effects on trabecular disuse osteopenia independent from muscle atrophy. Bone 93:33–42

    Article  PubMed  CAS  Google Scholar 

  91. Yarrow J, Conover C, Beggs L et al (2014) Testosterone dose dependently prevents bone and muscle loss in rodents after spinal cord injury. J Neurotrauma 31:834–845

    Article  PubMed  PubMed Central  Google Scholar 

  92. Huh JY, Mougios V, Skraparlis A, Kabasakalis A, Mantzoros CS (2014) Irisin in response to acute and chronic whole-body vibration exercise in humans. Metabolism 63:918–921

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Funding for this research was provided by the National Institute on Aging, US National Institutes of Health (AG 036675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Hamrick.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettis, T., Kim, BJ. & Hamrick, M.W. Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int 29, 1713–1720 (2018). https://doi.org/10.1007/s00198-018-4570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-4570-1

Keywords

Navigation