Skip to main content
Log in

Integrative analysis of genome-wide association studies and gene expression profiles identified candidate genes for osteoporosis in Kashin-Beck disease patients

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The molecular mechanism of osteoporosis (OP) in Kashin-Beck disease (KBD) patients was unclear. Our results suggest that KBD and OP shared some common causal genes, functionally involved in skeletal growth and development and chronic inflammation. Our results provide novel clues for clarifying the molecular mechanism of OP in KBD patients.

Introduction

KBD is a chronic skeletal disorder with osteopenia and OP. The pathogenesis of OP in KBD patients remains elusive.

Methods

A total of 1717 subjects participated in this study. KBD was diagnosed according to the clinical diagnosis criteria of China (GB16395-1996). The bone mineral density (BMD) and bone areas of the ulna and radius, hip, and lumbar (L1–L4) were measured with a Hologic 4500 W dual-energy X-ray absorptiometry scanner. Genotyping was conducted using Affymetrix SNP Array 6.0. Gene expression profiling of peripheral blood mononuclear cells of KBD and OP patients were compared using Affymetrix HG-U133 plus 2.0 arrays and Agilent Human 1A arrays, respectively. Genome-wide association studies (GWAS) were conducted by PLINK. SCEA and DAVID were applied for pleiotropy and functional enrichment analysis, respectively.

Results

SCEA analysis observed significant pleiotropic effects between KBD and the ulna and radius BMD (P value = 5.99 × 10−3). GWAS meta-analysis identified six candidate genes with pleiotropic effects, including PDGFD, SOX5, DPYD, CTR9, SPP1, and COL4A1. GO analysis identified 16 significant GO shared by KBD and the ulna and radius BMD, involved in cell morphogenesis and apoptosis. Pathway enrichment analysis detected two common pathways for KBD and the ulna and radius BMD, including calcium signaling pathway and vascular smooth muscle contraction pathway. Gene expression analysis detected three up-regulated inflammation-related genes for KBD and OP, including IL1B, IL8, and CCL1.

Conclusion

This study reported several candidate genes involved in the development of OP in KBD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Moreno-Reyes R, Suetens C, Mathieu F, Begaux F, Zhu D, Rivera MT, Boelaert M, Neve J, Perlmutter N, Vanderpas J (1998) Kashin-Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status. N Engl J Med 339:1112–1120

    Article  CAS  PubMed  Google Scholar 

  2. Stone R (2009) Diseases. A medical mystery in middle China. Science 324:1378–1381

    Article  CAS  PubMed  Google Scholar 

  3. Lu AL, Guo X, Aisha MM, Shi XW, Zhang YZ, Zhang YY (2010) Kashin-Beck disease and Sayiwak disease in China: prevalence and a comparison of the clinical manifestations, familial aggregation, and heritability. Bone 48(2):347–353

    Article  PubMed  Google Scholar 

  4. Shi XW, Guo X, Lv AL, Kang L, Zhou YL, Zhang YZ, Wu XM, Bai YD (2010) Heritability estimates and linkage analysis of 23 short tandem repeat loci on chromosomes 2, 11, and 12 in an endemic osteochondropathy in China. Scand J Rheumatol 39:259–265

    Article  CAS  PubMed  Google Scholar 

  5. Shi Y, Lu F, Liu X et al (2011) Genetic variants in the HLA-DRB1 gene are associated with Kashin-Beck disease in the Tibetan population. Arthritis Rheum 63:3408–3416

    Article  CAS  PubMed  Google Scholar 

  6. Chen Z, Zheng G, Ghosh K, Li Z (2005) Linkage disequilibrium mapping of quantitative-trait loci by selective genotyping. Am J Hum Genet 77:661–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiong YM, Mo XY, Zou XZ, Song RX, Sun WY, Lu W, Chen Q, Yu YX, Zang WJ (2010) Association study between polymorphisms in selenoprotein genes and susceptibility to Kashin-Beck disease. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 18:817–824

    Article  CAS  Google Scholar 

  8. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  10. Duan C, Guo X, Zhang XD, Yu HJ, Yan H, Gao Y, Ma WJ, Gao ZQ, Xu P, Lammi M (2010) Comparative analysis of gene expression profiles between primary knee osteoarthritis and an osteoarthritis endemic to Northwestern China, Kashin-Beck disease. Arthritis Rheum 62:771–780

    Article  PubMed  Google Scholar 

  11. Nyholt DR (2014) SECA: SNP effect concordance analysis using genome-wide association summary results. Bioinformatics 30:2086–2088

    Article  CAS  PubMed  Google Scholar 

  12. Wang SJ, Guo X, Zuo H, Zhang YG, Xu P, Ping ZG, Zhang Z, Geng D (2006) Chondrocyte apoptosis and expression of Bcl-2, Bax, Fas, and iNOS in articular cartilage in patients with Kashin-Beck disease. J Rheumatol 33:615–619

    PubMed  Google Scholar 

  13. Liu JT, Guo X, Ma WJ, Zhang YG, Xu P, Yao JF, Bai YD (2010) Mitochondrial function is altered in articular chondrocytes of an endemic osteoarthritis, Kashin-Beck disease. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 18:1218–1226

    Article  CAS  Google Scholar 

  14. Weinstein RS, Manolagas SC (2000) Apoptosis and osteoporosis. Am J Med 108:153–164

    Article  CAS  PubMed  Google Scholar 

  15. Li F, Sun X, Ma J, Ma X, Zhao B, Zhang Y, Tian P, Li Y, Han Z (2014) Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway. Biochem Biophys Res Commun 452:629–635

    Article  CAS  PubMed  Google Scholar 

  16. Tai TW, Su FC, Chen CY, Jou IM, Lin CF (2014) Activation of p38 MAPK-regulated Bcl-xL signaling increases survival against zoledronic acid-induced apoptosis in osteoclast precursors. Bone 67:166–174

    Article  CAS  PubMed  Google Scholar 

  17. Huser CA, Davies ME (2007) Calcium signaling leads to mitochondrial depolarization in impact-induced chondrocyte death in equine articular cartilage explants. Arthritis Rheum 56:2322–2334

    Article  CAS  PubMed  Google Scholar 

  18. Han SK, Wouters W, Clark A, Herzog W (2012) Mechanically induced calcium signaling in chondrocytes in situ. J Orthop Res: Off Publ OrthopRes Soc 30:475–481

    Article  CAS  Google Scholar 

  19. Zayzafoon M (2006) Calcium/calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem 97:56–70

    Article  CAS  PubMed  Google Scholar 

  20. Hwang SY, Putney JW Jr (2011) Calcium signaling in osteoclasts. Biochim Biophys Acta 1813:979–983

    Article  CAS  PubMed  Google Scholar 

  21. Choi ST, Kim JH, Kang EJ, Lee SW, Park MC, Park YB, Lee SK (2008) Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology (Oxford) 47:1775–1779

    Article  CAS  Google Scholar 

  22. Reinholt FP, Hultenby K, Oldberg A, Heinegard D (1990) Osteopontin—a possible anchor of osteoclasts to bone. Proc Natl Acad Sci U S A 87:4473–4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu G, Sun W, He D, Wang L, Zheng W, Nie H, Ni L, Zhang D, Li N, Zhang J (2005) Overexpression of osteopontin in rheumatoid synovial mononuclear cells is associated with joint inflammation, not with genetic polymorphism. J Rheumatol 32:410–416

    CAS  PubMed  Google Scholar 

  24. Lefebvre V, Li P, de Crombrugghe B (1998) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17:5718–5733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aza-Carmona M, Shears DJ, Yuste-Checa P et al (2011) SHOX interacts with the chondrogenic transcription factors SOX5 and SOX6 to activate the aggrecan enhancer. Hum Mol Genet 20:1547–1559

    Article  CAS  PubMed  Google Scholar 

  26. Canalis E, McCarthy TL, Centrella M (1989) Effects of platelet-derived growth factor on bone formation in vitro. J Cell Physiol 140:530–537

    Article  CAS  PubMed  Google Scholar 

  27. Elangovan S, D’Mello SR, Hong L, Ross RD, Allamargot C, Dawson DV, Stanford CM, Johnson GK, Sumner DR, Salem AK (2014) The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials 35:737–747

    Article  CAS  PubMed  Google Scholar 

  28. Tian L, Wang W, Hou W et al (2011) Autoimmune and inflammatory responses in Kashin-Beck disease compared with rheumatoid arthritis and osteoarthritis. Hum Immunol 72:812–816

    Article  CAS  PubMed  Google Scholar 

  29. Zhou X, Wang Z, Chen J, Wang W, Song D, Li S, Yang H, Xue S, Chen C (2014) Increased levels of IL-6, IL-1beta, and TNF-alpha in Kashin-Beck disease and rats induced by T-2 toxin and selenium deficiency. Rheumatol Int 34:995–1004

    Article  CAS  PubMed  Google Scholar 

  30. Yang TF, Wang G, Tong W, Gong Q, Cheng Y (2001) Measurement of the bioactivity of interleukin and tumour necrosis factor in synovial fluid of Kashin-Beck disease. Int Orthop 25:162–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barbour KE, Boudreau R, Danielson ME et al (2012) Inflammatory markers and the risk of hip fracture: the women’s health initiative. J Bone Miner Res: Off J Am Soc Bone Miner Res 27:1167–1176

    Article  CAS  Google Scholar 

  32. Barbour KE, Lui LY, Ensrud KE, Hillier TA, LeBlanc ES, Ing SW, Hochberg MC, Cauley JA, Study of Osteoporotic Fractures Research G (2014) Inflammatory markers and risk of hip fracture in older white women: the study of osteoporotic fractures. J Bone Miner Res: Off J Am Soc Bone MinerRes 29:2057–2064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Natural Scientific Fund of China (81472925), Science and Technology Research and Development Program of Shaanxi Province of China (2013KJXX-51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zhang.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Quantile-quantile plot of GWAS meta-analysis results of KBD and the ulna and radius BMD. (GIF 121 kb)

High resolution (TIFF 725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Guo, X., Hao, J. et al. Integrative analysis of genome-wide association studies and gene expression profiles identified candidate genes for osteoporosis in Kashin-Beck disease patients. Osteoporos Int 27, 1041–1046 (2016). https://doi.org/10.1007/s00198-015-3364-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3364-y

Keywords

Navigation