Skip to main content

Advertisement

Log in

Zoledronate reverses mandibular bone loss in osteoprotegerin-deficient mice

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

To characterize the changes in osteoprotegerin-deficient (OPG−/−) mice mandibles and the possible mandibular bone loss prevention by zoledronate. This preventive effect in the mandible differed from that in the proximal tibia and was independent of the OPG pathway.

Introduction

The study aimed to characterize both the changes in the mandible in osteoprotegerin-deficient (OPG−/−) mice and possible mandibular bone loss prevention by zoledronate.

Methods

Twenty-eight 6-week-old female mice (C57BL/6J), including OPG−/− (n = 21) and wild-type (WT) (n = 7) mice, were assigned to four groups after 2 weeks of acclimatization to local vivarium conditions: wild mice with vehicle (WT group); OPG−/− mice with vehicle (OPG−/− group); and OPG−/− mice that were subcutaneously injected with either 50 or 150 μg/kg zoledronate (Zol-50 and Zol-150 groups, respectively). Mice were sacrificed at 4 weeks after these treatments and after fasting for 12 h. Sera were harvested for biochemical analyses. The right mandible and tibia of each mouse were selected for microCT analysis. Student’s t-test was performed for comparisons of bone parameters at different sites in the WT group. Analysis of variance (ANOVA) was used to compare the biomarkers and bone parameters in the different treatment groups.

Results

Serum bone-specific alkaline phosphatase (B-ALP) and tartrate-resistant acid phosphatase 5b (TRACP-5b) were significantly decreased in WT mice as compared to the levels in the OPG−/− mice (P < 0.05). Zoledronate treatment decreased the high serum B-ALP activity observed in OPG−/− mice to the levels seen in WT mice, while serum TRACP-5b concentrations were decreased to levels even lower than those in WT mice. There were substantial variations in BMD and microstructure of the mandibular and proximal tibial trabeculae. Mandibular bone loss was less affected by OPG gene deprivation than the proximal tibia was. Both zoledronate groups showed greater BMD, trabecular BV/TV, Tb.Th, Tb.N, and Conn.D and a significant decrease in Tb.Sp and SMI as compared to the findings in OPG−/− mice (P < 0.05). However, higher apparent BMD and more compact plate-like trabeculae were observed in the mandible after treatment with zoledronate as compared to the findings in the proximal tibia. No significant differences were found in any parameter in both zoledronate groups.

Conclusions

The present study showed that zoledronate could reverse the significant bone loss in mice mandibles that was induced by OPG gene deficiency. This preventive effect, which was accompanied with considerable inhibition of bone turnover, differed in the mandible and in the proximal tibia and was independent of the OPG pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Felsenberg D, Boonen S (2005) The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 27:1–11

    Article  PubMed  Google Scholar 

  2. Turner CH (2002) Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int 13:97–104

    Article  PubMed  CAS  Google Scholar 

  3. Jeffcoat M (2005) The association between osteoporosis and oral bone loss. J Periodontol 76(Suppl):2125–2132

    Article  PubMed  Google Scholar 

  4. Krall EA, Garcia RI, Dawson-Hughes B (1996) Increased risk of tooth loss is related to bone loss at the whole body, hip, and spine. Calcif Tissue Int 59:433–437

    Article  PubMed  CAS  Google Scholar 

  5. Taguchi A, Tanimoto K, Suei Y, Wada T (1995) Tooth loss and mandibular osteopenia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 79:127–132

    Article  PubMed  CAS  Google Scholar 

  6. Kribbs PJ (1990) Comparison of mandibular bone in normal and osteoporotic women. J Prosthet Dent 63:218–222

    Article  PubMed  CAS  Google Scholar 

  7. Payne JB, Reinhardt RA, Nummikoski PV, Patil KD (1999) Longitudinal alveolar bone loss in postmenopausal osteoporotic/osteopenic women. Osteoporos Int 10:34–40

    Article  PubMed  CAS  Google Scholar 

  8. Taguchi A, Tanimoto K, Suei Y, Otani K, Wada T (1995) Oral signs as indicators of possible osteoporosis in elderly women. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 80:612–616

    Article  PubMed  CAS  Google Scholar 

  9. Taguchi A, Sanada M, Krall E, Nakamoto T, Ohtsuka M, Suei Y, Tanimoto K, Kodama I, Tsuda M, Ohama K (2003) Relationship between dental panoramic radiographic findings and biochemical markers of bone turnover. J Bone Miner Res 18:1689–1694

    Article  PubMed  Google Scholar 

  10. Simonet WS, Lacey DL, Danstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  11. Kong YY, Yoshida H, Sarosi L, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulation of osteoclastogenesis, lymphocyte development and lymphnode organogensis. Nature 397:315–323

    Article  PubMed  CAS  Google Scholar 

  12. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  PubMed  CAS  Google Scholar 

  13. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL (2000) The role of osteoprotegerin and osteoprotegrin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12

    Article  PubMed  CAS  Google Scholar 

  14. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  PubMed  CAS  Google Scholar 

  15. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 29(247):610–615

    Article  Google Scholar 

  16. Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5449

    Article  PubMed  CAS  Google Scholar 

  17. Jiang G, Matsumoto H, Yamane J, Kuboyama N, Akimoto Y, Fujii A (2004) Prevention of trabecular bone loss in the mandible of ovariectomized rats. J Oral Sci 46:75–85

    Article  PubMed  Google Scholar 

  18. Kimura E, Nishioka T, Hasegawa K, Maki K (2007) Effects of bisphosphonate on the mandible of rats in the growing phase with steroid-induced osteoporosis. Oral Dis 13:544–549

    Article  PubMed  CAS  Google Scholar 

  19. Srisubut S, Teerakapong A, Vattraphodes T, Taweechaisupapong S (2007) Effect of local delivery of alendronate on bone formation in bioactive glass grafting in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 10:e11–e16

    Article  Google Scholar 

  20. Li EC, Davis LE (2003) Zoledronic acid: a new parenteral bisphosphonate. Clin Ther 25:2669–2708

    Article  PubMed  CAS  Google Scholar 

  21. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC (2000) Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60:6001–6007

    PubMed  CAS  Google Scholar 

  22. Green JR (2001) Chemical and biological prerequisites for novel bisphosphonate molecules: Results of comparative preclinical studies. Semin Oncol 28(Suppl):4–10

    Article  PubMed  CAS  Google Scholar 

  23. Mavropoulos A, Rizzoli R, Ammann P (2007) Different responsiveness of alveolar and tibial bone to bone loss stimuli. J Bone Miner Res 22:403–410

    Article  PubMed  Google Scholar 

  24. Yamashiro T, Takano-Yamamoto T (1998) Differential responses of mandibular condyle and femur to oestrogen deficiency in young rats. Arch Oral Biol 43:191–195

    Article  PubMed  CAS  Google Scholar 

  25. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615

    Article  PubMed  CAS  Google Scholar 

  26. Tommasini SM, Morgan TG, van der Meulen MCh, Jepsen KJ (2005) Genetic variation in structure-function relationships for the inbred mouse lumbar vertebral body. J Bone Miner Res 20:817–827

    Article  PubMed  Google Scholar 

  27. Sheng ZF, Dai RC, Wu XP, Fang LN, Fan HJ, Liao EY (2007) Regionally specific compensation for bone loss in the tibial trabeculae of estrogen-deficient rats. Acta Radiol 48:531–539

    Article  PubMed  CAS  Google Scholar 

  28. Jiang G, Matsumoto H, Fujii A (2003) Mandible bone loss in osteoporosis rats. J Bone Miner Metab 21:388–395

    Article  PubMed  CAS  Google Scholar 

  29. Mavropoulos A, Kiliaridis S, Bresin A, Ammann P (2004) Effect of different masticatory functional and mechanical demands on the structural adaptation of the mandibular alveolar bone in young growing rats. Bone 35:191–197

    Article  PubMed  CAS  Google Scholar 

  30. Green JR (2004) Bisphosphonates: preclinical review. Oncologist 9(Suppl):3–13

    Article  PubMed  CAS  Google Scholar 

  31. Yong Hee K, Gwan-shik K, Jeong-Hwa B (2002) Inhibitory action of bisphosphonates on bone resorption does not involve the regulation of RANKL and OPG expression. Exp Mol Med 34:145–151

    Google Scholar 

  32. Mackie PS, Fisher JL, Zhou H, Choong PF (2001) Bisphosphonates regulate cell growth and gene expression in the UMR 106–01 clonal rat osteosarcoma cell line. Br J Cancer 84:951–958

    Article  PubMed  CAS  Google Scholar 

  33. Viereck V, Emons G, Lauck V, Frosch KH, Blaschke S, Gründker C, Hofbauer LC (2002) Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 291:680–686

    Article  PubMed  CAS  Google Scholar 

  34. Pan B, Farrugia AN, To LB, Findlay DM, Green J, Lynch K, Zannettino AC (2004) The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-alpha converting enzyme (TACE). J Bone Miner Res 19:147–154

    Article  PubMed  CAS  Google Scholar 

  35. Rhee Y, Won YY, Baek MH, Lim SK (2004) Maintenance of increased bone mass after recombinant human parathyroid hormone (1–84) with sequential zoledronate treatment in ovariectomized rats. J Bone Miner Res 19:931–937

    Article  PubMed  CAS  Google Scholar 

  36. Glatt M, Pataki A, Evans GP, Hornby SB, Green JR (2004) Loss of vertebral bone and mechanical strength in estrogen-deficient rats is prevented by long-term administration of zoledronic acid. Osteoporos Int 15:707–715

    Article  PubMed  CAS  Google Scholar 

  37. Marx RE, Cillo JE Jr, Ulloa JJ (2007) Oral Bisphosphonate-Induced Osteonecrosis: Risk Factors, Prediction of Risk Using Serum CTX Testing, Prevention, and Treatment. J Oral Maxillofac Surg 65:2397–2410

    Article  PubMed  Google Scholar 

  38. Dannemann C, Grätz KW, Riener MO, Zwahlen RA (2007) Jaw osteonecrosis related to bisphosphonate therapy: a severe secondary disorder. Bone 40:828–834

    Article  PubMed  CAS  Google Scholar 

  39. Durie BG, Katz M, Crowley J (2005) Osteonecrosis of the jaw and bisphosphonates. N Engl J Med 353:99–102 discussion 99–102

    Article  PubMed  CAS  Google Scholar 

  40. Bamias A, Kastritis E, Bamia C, Moulopoulos LA, Melakopoulos I, Bozas G, Koutsoukou V, Gika D, Anagnostopoulos A, Papadimitriou C, Terpos E, Dimopoulos MA (2005) Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol 23:8580–8587

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 30400514 and No.30470430), and the Ministry of Health P.R. of China (No. 2004–468–50). The authors thank Ms Suan Joanna, Mr Zengxing Liu and Dr. Zou Ke (GE Healthcare Company, Canada) for their assistance with technology supporting.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.-Y. Liao.

Additional information

Drs. Sheng and Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, ZF., Xu, K., Ma, YL. et al. Zoledronate reverses mandibular bone loss in osteoprotegerin-deficient mice. Osteoporos Int 20, 151–159 (2009). https://doi.org/10.1007/s00198-008-0640-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0640-0

Keywords

Navigation