Skip to main content

Advertisement

Log in

Variations along the 24-hour cycle of circulating osteoprotegerin and soluble RANKL: a rhythmometric analysis

  • Short Communication
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The variability of serum osteoprotegerin (OPG) and soluble RANKL (sRANKL) along the 24-h cycle was assessed in 20 healthy women. No rhythmic variations of serum OPG, sRANKL or sRANKL/OPG ratio were detected as a group phenomenon. Timing of sampling is unlikely to influence the results of measurements of circulating OPG and sRANKL.

Introduction

Physiological bone turnover shows diurnal variations. The aim of the study was to assess variability of OPG and sRANKL serum levels along the 24-h cycle.

Methods

Blood was collected from 20 healthy women (median age 31 years, range 25–65 years) at 4-h intervals between 08:00 and 24:00 and at 2-h intervals between 24:00 and 08:00. Serum albumin, cortisol, osteocalcin (OC), C-terminal telopeptide of type I collagen (CTX), OPG and total sRANKL were measured. Temporal variations were assessed by the COSINOR model.

Results

Circadian rhythms of cortisol and albumin documented a normal synchronization within the circadian structure. Serum OC and CTX showed rhythmic variations, peaking at night-time. Rhythmic variations of serum OPG, sRANKL and sRANKL/OPG ratio were not detected as a group phenomenon. On an individual basis, rhythmic changes were detected in ten patients for OPG and eight patients for sRANKL, with very small amplitudes and heterogeneous acrophases.

Conclusions

The absence of consistent rhythmic variations of circulating OPG and sRANKL levels may reflect the absence of rhythmic variations of their expression in the bone microenvironment. Were this the case, the nocturnal rise of bone resorption should be accounted for by different, not RANKL/OPG-mediated factors. Since circulating OPG and sRANKL may derive from sources other than bone, rhythmicity could be masked by non-rhythmic or non-synchronized rhythmic expression in these sources. Timing of sampling is unlikely to influence the results of measurements of circulating OPG and sRANKL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292:490–495

    Article  PubMed  CAS  Google Scholar 

  2. Theoleyre S, Wittrant Y, Tat SK, et al (2004) The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 15:457–475

    Article  PubMed  CAS  Google Scholar 

  3. Rogers A, Eastell R (2005) Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 90:6323–6331

    Article  PubMed  CAS  Google Scholar 

  4. Dovio A, Data V, Angeli A (2005) Circulating osteoprotegerin and soluble RANKL: do they have a future in clinical practice? J Endocrinol Invest 28 [10 Suppl]:14–22

    PubMed  CAS  Google Scholar 

  5. Camacho P, Kleerekoper M (2006) Biochemical markers of bone turnover. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 6th edn. The American Society for Bone and Mineral Research, Washington, DC, pp 127–132

    Google Scholar 

  6. Heshmati HM, Riggs BL, Burritt MF, et al (1998) Effects of the circadian variation in serum cortisol on markers of bone turnover and calcium homeostasis in normal postmenopausal women. J Clin Endocrinol Metab 83:751–756

    Article  PubMed  CAS  Google Scholar 

  7. Greenspan SL, Dresner-Pollak R, Parker RA, et al (1997) Diurnal variation of bone mineral turnover in elderly men and women. Calcif Tissue Int 60:419–423

    Article  PubMed  CAS  Google Scholar 

  8. Ahmad AM, Hopkins MT, Fraser WD, et al (2003) Parathyroid hormone secretory pattern, circulating activity, and effect on bone turnover in adult growth hormone deficiency. Bone 32:170–179

    Article  PubMed  CAS  Google Scholar 

  9. Qvist P, Christgau S, Pedersen BJ, et al (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 31:57–61

    Article  PubMed  CAS  Google Scholar 

  10. Bjarnason NH, Henriksen EEG, Alexandersen P, et al (2002) Mechanism of circadian variation in bone resorption. Bone 30:307–313

    Article  PubMed  CAS  Google Scholar 

  11. Henriksen DB, Alexandersen P, Hartmann B, et al (2007) Dissociation of bone resorption and formation by GLP-2. A 14-day study in healthy postmenopausal women. Bone 40:723–729

    Article  PubMed  CAS  Google Scholar 

  12. Henriksen DB (2005) The gut feeling of bone remodeling. BoneKEy-Osteovision 2:16-23; available at: http://www.bonekey-ibms.org/cgi/content/full/ibmske;2/11/16; DOI 0.1138/20050182

  13. Fu L, Patel MS, Bradley A, et al (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815

    Article  PubMed  CAS  Google Scholar 

  14. Zvonic S, Ptitsyn AA, Kilroy G, et al (2007) Circadian oscillation of gene expression in murine calvarial bone. J Bone Miner Res 22:357–365

    Article  PubMed  CAS  Google Scholar 

  15. Joseph F, Chan BY, Corlett P, et al (2005) The circadian rhythm of osteoprotegerin and its association with parathyroid hormone secretion. British Endocrine Societies 24th Joint Meeting, 4–6 April 2005, Harrogate, UK. http://www.endocrineabstracts.org/ea/0009/ea0009p66.htm (accessed 11.10.06)

  16. Tarquini R, Mazzoccoli G, Dolenti S, et al (2005) Circasemidian rather than circadian variation of circulating osteoprotegerin in clinical health. Biomed Pharmacother 59 [Suppl 1]:225–228

    Article  Google Scholar 

  17. Ohta H, Onoe Y, Shimizu M, et al (2006) Diurnal and monthly variations in bone metabolic markers and bone metabolic modulators in young women (abstract). J Bone Miner Res 21:144

    Google Scholar 

  18. Generali D, Berruti A, Tampellini M, et al (2007) The circadian rhythm of biochemical markers of bone resorption is normally synchronized in breast cancer patients with bone lytic metastases independently of tumor load. Bone 40:182–188

    Article  PubMed  CAS  Google Scholar 

  19. Dovio A, Sartori ML, Angeli A (2002) Correspondence re: A. Lipton et al, Serum osteoprotegerin levels in healthy controls and cancer patients. Clin Cancer Res 8:2306–2310, 2002. Clin Cancer Res 9:2384–2385

    Google Scholar 

  20. Chan BYY, Buckley KA, Durham BH, et al (2003) Effect of anticoagulants and storage temperature on the stability of receptor activator for nuclear factor-kB ligand and osteoprotegerin in plasma and serum. Clin Chem 49:2083–2085

    Article  PubMed  CAS  Google Scholar 

  21. Hawa G, Brinskelle-Schmal N, Glatz K, et al (2003) Immunoassay for soluble RANKL (receptor activator of NF-kappaB ligand) in serum. Clin Lab 49:461–463

    PubMed  CAS  Google Scholar 

  22. Srivastava AK, Mohan S, Singer FR, Baylink DJ (2002) A urine midmolecule osteocalcin assay shows higher discriminatory power than a serum midmolecule osteocalcin assay during short-term alendronate treatment of osteoporotic patients. Bone 31:62–69

    Article  PubMed  CAS  Google Scholar 

  23. Lee AJ, Hodges S, Eastell R (2000) Measurement of osteocalcin. Ann Clin Biochem 37:432–446

    Article  PubMed  Google Scholar 

  24. Blair JM, Zheng Y, Dunstan CR (2007) RANK ligand. Int J Biochem Cell Biol 39:1077–1081

    Google Scholar 

  25. Nakashima T, Kobayashi Y, Yamasaki S, et al (2000) Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun 275:768–775

    Article  PubMed  CAS  Google Scholar 

  26. Hikita A, Yana I, Wakeyama H, et al (2006) Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-kappaB ligand. J Biol Chem 281:36846–36855

    Article  PubMed  CAS  Google Scholar 

  27. Tomoyasu A, Goto M, Fujise N, et al (1998) Characterization of monomeric and homodimeric forms of osteoclastogenesis inhibitory factor. Biochem Biophys Res Commun 245:382–387

    Article  PubMed  CAS  Google Scholar 

  28. Dovio A, Allasino B, Palmas E, et al (2007) Increased osteoprotegerin levels in Cushing’s syndrome are associated with an adverse cardiovascular risk profile. J Clin Endocrinol Metab 92:1803–1808

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants from the Associazione Patologia Oncologica Mammaria—APOM and Amici dell’Ospedale di Cremona, Cremona, Italy; Consiglio Nazionale Ricerche (CNR), Rome, Italy; Ricerca Sanitaria Finalizzata - Regione Piemonte; Novartis Oncology, Origgio (VA), Italy; AMGEN S.p.A., Milan, Italy. A. Dovio has been awarded one of the 2004 Prizes from the Società Italiana di Medicina Interna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dovio.

Additional information

Andrea Dovio and Daniele Generali contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dovio, A., Generali, D., Tampellini, M. et al. Variations along the 24-hour cycle of circulating osteoprotegerin and soluble RANKL: a rhythmometric analysis. Osteoporos Int 19, 113–117 (2008). https://doi.org/10.1007/s00198-007-0423-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0423-z

Keywords

Navigation