Skip to main content
Log in

Parallel chemistry acceleration algorithm with ISAT table-size control in the application of gaseous detonation

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In order to improve the computational efficiency of a parallel ISAT (in situ adaptive tabulation)-based chemistry acceleration algorithm in the computations of transient, chemically reacting flows, a control strategy is proposed to maintain the sizes of the data tables in the ISAT computations. The table-size control strategy is then combined with a parallel algorithm to simulate two-dimensional gaseous detonation wave propagation. In the computation of 2H2 + O2 detonation, two sets of tests are conducted to identify the size control strategy. In the first set, the maximum total table size (Mtot) summed over all sub-zones is fixed, while the maximum size of the table on each sub-zone (Msin) is varied. In the second set, a fixed Msin is used for all the tables on the sub-zones while Mtot is varied. A maximum speedup ratio of 4.29 is found in the former tests, while 5.52 is found in the latter. Two parameters, σf and p, are proposed to analyze the load balance and synchronization among table operations in the parallel ISAT computations in the above tests. It is found that both load balance and synchronization have clear influences on the speedup ratio. A parameter pM is defined, and a strategy to choose the optimal maximum table sizes (both Mtot and Msin) based on pM is proposed and is verified to be universal in the computations of both 2H2 + O2 detonation and C2H4 + 3O2 detonation. Finally, the parallel acceleration algorithm enhanced with table-size control is shown to be highly accurate for the detonations in both fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Warnatz, J., Mass, U., Dibble, R.W.: Combustion: Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation, 4th edn. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-45363-5

    Book  Google Scholar 

  2. Chen, J.Y., Kollmann, W., Dibble, R.W.: PDF modeling of turbulent non-premixed methane jet flames. Combust. Sci. Technol. 64(4–6), 315–346 (1989). https://doi.org/10.1080/00102208908924038

    Article  Google Scholar 

  3. Turányi, T.: Parameterization of reaction mechanisms using orthonormal polynomials. Comput. Chem. 18(1), 45–54 (1994). https://doi.org/10.1016/0097-8485(94)80022-7

    Article  Google Scholar 

  4. Christo, F.C., Masri, A.R., Nebot, E.M.: Artificial neural network implementation of chemistry with PDF simulation of H2/CO2 flames. Combust. Flame 106(4), 406–427 (1996). https://doi.org/10.1016/0010-2180(95)00250-2

    Article  Google Scholar 

  5. Blasco, J.A., Fueyo, N., Dopazo, C., et al.: Modelling the temporal evolution of a reduced combustion chemical system with an artificial neural network. Combust. Flame 113(1–2), 38–52 (1998). https://doi.org/10.1016/S0010-2180(97)00211-3

    Article  Google Scholar 

  6. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1(1), 41–63 (1997). https://doi.org/10.1080/713665229

    Article  MathSciNet  MATH  Google Scholar 

  7. Rabitz, H., Ömer, A.F.: General foundations of high-dimensional model representations. J. Math. Chem. 25(2–3), 197–233 (1999). https://doi.org/10.1023/A:1019188517934

    Article  MathSciNet  MATH  Google Scholar 

  8. Tonse, S.R., Moriarty, N.W., Brown, N.J., et al.: PRISM: piecewise reusable implementation of solution mapping. An economical strategy for chemical kinetics. Isr. J. Chem. 39(1), 97–106 (1999). https://doi.org/10.1002/ijch.199900010

    Article  Google Scholar 

  9. Bell, J.B., Brown, N.J., Day, M.S., et al.: Scaling and efficiency of prism in adaptive simulations of turbulent premixed flames. Proc. Combust. Inst. 28(1), 107–113 (2000). https://doi.org/10.1016/S0082-0784(00)80201-5

    Article  Google Scholar 

  10. Xu, J., Pope, S.B.: PDF calculations of turbulent non-premixed flames with local extinction. Combust. Flame 123(3), 281–307 (2000). https://doi.org/10.1016/S0010-2180(00)00155-3

    Article  Google Scholar 

  11. Tang, Q., Xu, J., Pope, S.B.: Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames. Proc. Combust. Inst. 28(1), 133–139 (2000). https://doi.org/10.1016/S0082-0784(00)80204-0

    Article  Google Scholar 

  12. Cao, R.R., Pope, S.B.: The influence of chemical mechanisms on PDF calculations of non-premixed piloted jet flames. Combust. Flame 143(4), 450–470 (2005). https://doi.org/10.1016/j.combustflame.2005.08.018

    Article  Google Scholar 

  13. Liu, B.J.D., Pope, S.B.: The performance of in situ adaptive tabulation in computations of turbulent flames. Combust. Theory Model. 9(4), 549–568 (2005). https://doi.org/10.1080/13647830500307436

    Article  MATH  Google Scholar 

  14. Gordon, R.L., Masri, A.R., Pope, S.B., et al.: A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust. Theory Model. 11(3), 351–376 (2007). https://doi.org/10.1080/13647830600903472

    Article  MATH  Google Scholar 

  15. Fooladgar, E., Chan, C.K., Nogenmyr, K.J.: An accelerated computation of combustion with finite-rate chemistry using LES and an open source library for in-situ-adaptive tabulation. Comput. Fluids 146, 42–50 (2017). https://doi.org/10.1016/j.compfluid.2017.01.008

    Article  MathSciNet  MATH  Google Scholar 

  16. Avdić, A., Kuenne, G., Mare, F.D., et al.: LES combustion modeling using the Eulerian stochastic field method coupled with tabulated chemistry. Combust. Flame 175, 201–219 (2016). https://doi.org/10.1016/j.combustflame.2016.06.015

    Article  Google Scholar 

  17. Liang, Y., Pope, S.B., Pepiot, P.: A pre-partitioned adaptive chemistry methodology for the efficient implementation of combustion chemistry in particle PDF methods. Combust. Flame 162(9), 3236–3253 (2015). https://doi.org/10.1016/j.combustflame.2015.05.012

    Article  Google Scholar 

  18. Contino, F., Jeanmart, H., Lucchini, T., et al.: Coupling of in situ adaptive tabulation and dynamic adaptive chemistry: An effective method for solving combustion in engine simulations. Proc. Combust. Inst. 33(2), 3057–3064 (2011). https://doi.org/10.1016/j.proci.2010.08.002

    Article  Google Scholar 

  19. Yang, B., Pope, S.B.: Treating chemistry in combustion with detailed mechanisms—in situ adaptive tabulation in principal directions—premixed combustion. Combust. Flame 112(1–2), 85–112 (1998). https://doi.org/10.1016/S0010-2180(97)81759-2

    Article  Google Scholar 

  20. Ren, Z., Liu, Y., Lu, T., et al.: The use of dynamic adaptive chemistry and tabulation in reactive flow simulations. Combust. Flame 161(1), 127–137 (2014). https://doi.org/10.1016/j.combustflame.2013.08.018

    Article  Google Scholar 

  21. Kumar, A., Mazumder, S.: Adaptation and application of the in situ adaptive tabulation (ISAT) procedure to reacting flow calculations with complex surface chemistry. Comput. Chem. Eng. 35(7), 1317–1327 (2011). https://doi.org/10.1016/j.compchemeng.2010.10.005

    Article  Google Scholar 

  22. Dong, G., Fan, B.C., Chen, Y.L.: Acceleration of chemistry computations in two-dimensional detonation induced by shock focusing using reduced ISAT. Combust. Theory Model. 11(5), 823–837 (2007). https://doi.org/10.1080/13647830701316657

    Article  MATH  Google Scholar 

  23. Dong, G., Fan, B.C.: Chemistry acceleration modeling of detonation based on the dynamical storage/deletion algorithm. Combust. Sci. Technol. 181(9), 1207–1216 (2009). https://doi.org/10.1080/00102200903181744

    Article  Google Scholar 

  24. Lu, L., Lantz, S.R., Ren, Z., et al.: Computationally efficient implementation of combustion chemistry in parallel PDF calculations. J. Comput. Phys. 228(15), 5490–5525 (2009). https://doi.org/10.1016/j.jcp.2009.04.037

    Article  MATH  Google Scholar 

  25. Lu L., Ren Z., Lantz S. R., et al.: Investigation of strategies for the parallel implementation of ISAT in LES/FDF/ISAT computations. In: Fourth Joint Meeting of the US Sections of the Combustion Institute, Drexel University, Philadelphia, PA, 20–23 March (2005)

  26. Hiremath, V., Lantz, S.R., Wang, H., et al.: Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion. Combust. Flame 159(10), 3096–3109 (2012). https://doi.org/10.1016/j.combustflame.2012.04.013

    Article  Google Scholar 

  27. Hiremath, V., Lantz, S.R., Wang, H., et al.: Large-scale parallel simulations of turbulent combustion using combined dimension reduction and tabulation of chemistry. Proc. Combust. Inst. 34(1), 205–215 (2013). https://doi.org/10.1016/j.proci.2012.06.004

    Article  Google Scholar 

  28. Heye, C., Raman, V., Masri, A.R.: Influence of spray/combustion interactions on auto-ignition of methanol spray flames. Proc. Combust. Inst. 35(2), 1639–1648 (2015). https://doi.org/10.1016/j.proci.2014.06.087

    Article  Google Scholar 

  29. Wu, J.T., Dong, G., Li, B.M.: Parallel chemistry acceleration algorithms based on ISAT method in gaseous detonation computations. Comput. Fluids 167, 265–284 (2018). https://doi.org/10.1016/j.compfluid.2018.03.036

    Article  MathSciNet  MATH  Google Scholar 

  30. Burke, M.P., Chaos, M., Ju, Y., et al.: Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44(7), 444–474 (2012). https://doi.org/10.1002/kin.20603

    Article  Google Scholar 

  31. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: a variable-coefficient ODE solver. Soc. Ind. Appl. Math. 10(5), 1038–1051 (1989). https://doi.org/10.1137/0910062

    Article  MathSciNet  MATH  Google Scholar 

  32. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996). https://doi.org/10.1006/jcph.1996.0130

    Article  MathSciNet  MATH  Google Scholar 

  33. Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000). https://doi.org/10.1006/jcph.2000.6443

    Article  MathSciNet  MATH  Google Scholar 

  34. Latini, M., Schilling, O., Don, W.S.: Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer–Meshkov instability. J. Comput. Phys. 221(2), 805–836 (2007). https://doi.org/10.1016/j.jcp.2006.06.051

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Y.T., Shi, J., Shu, C.W., et al.: Numerical viscosity and resolution of high-order weighted essentially non-oscillatory schemes for compressible flows with high Reynolds numbers. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68, 046709 (2003). https://doi.org/10.1103/PhysRevE.68.046709

    Article  Google Scholar 

  36. Gamezo, V.N., Desbordes, D., Oran, E.S.: Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116(1–2), 154–165 (1999). https://doi.org/10.1016/S0010-2180(98)00031-5

    Article  Google Scholar 

  37. Gamezo, V.N., Desbordes, D., Oran, E.S.: Two-dimensional reactive flow dynamics in cellular detonation waves. Shock Waves 9(1), 11–17 (1999). https://doi.org/10.1007/s001930050134

    Article  Google Scholar 

  38. Dong, G., Fan, B.C., Ye, J.F.: Numerical investigation of ethylene flame bubble instability induced by shock waves. Shock Waves 17(6), 409–419 (2008). https://doi.org/10.1007/s00193-008-0124-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Natural Science Foundation of China (NSFC) under Grant No. 11872213. The authors would like to express their sincere gratitude to the anonymous reviewers and the editors for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dong.

Additional information

Communicated by A. Higgins.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Dong, G. & Li, Y. Parallel chemistry acceleration algorithm with ISAT table-size control in the application of gaseous detonation. Shock Waves 29, 523–535 (2019). https://doi.org/10.1007/s00193-018-0880-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0880-7

Keywords

Navigation