Skip to main content
Log in

Investigating ground effects on mixing and afterburning during a TNT explosion

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In this paper, the unconfined and semi-confined condensed phase explosions of TNT will be studied using large eddy simulations based on the unsteady, compressible, reacting, multi-species Navier–Stokes equations to gain further understanding of the physical processes involved in a condensed phase explosion and the effect of confinement on the physical processes involved. The analysis of the mixing and afterburning of TNT explosions in free air (unconfined) and near the ground (semi-confined) indicates that the combustion region of detonation products and air is determined by the vorticity patterns, which are induced by the Richtmeyer–Meshkov instabilities that arise during the explosion. When the explosive is detonated in the vicinity of a surface, the surface affects the shock propagation by creating complex shock systems, thereby changing the orientation of the vorticity, giving the afterburning a mushroom shape, and increasing performance of an explosive charge by prolonging the existence of the mixing layer and thereby the afterburning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ray Bowen, J. (ed.): Spherical mixing layers in explosions. In: Dynamics of Exothermicity, chap. 13. Gordon and Breach Publishers, NY (1992)

  2. Kuhl, A.L., Fergusson, R.E., Oppenheim, A.K.: Gasdynamic model of turbulent exothermic fields in explosions. Prog. Astronaut. Aeronaut. 173, 251–261 (1963)

    Google Scholar 

  3. Ingignoli, W.: Etude de la formation et de la propagation des detonations dans des suspensions de particules d’aluminium en atmosphere oxydante ou reactive. PhD thesis, Universite de Poitiers (1999)

  4. Almström, H.: Registration and simulation of air blast pressure of a detonation charge above ground. Methodology Report FOI-R-0819-SE, Swedish Defence Research Agency, Weapons and Protection Division (2003)

  5. Kuhl, A.L., Oppenheim, A.K., Ferguson, R.E., Seizew, M.R.: Visualisation of mixing and combustion of TNT explosions. In: Extreme States of Substance Detonation Shock Waves, February 26–March 3, Sarov, Nizhny Novgorod Region, Russia (2001)

  6. Balakrishnan, K., Menon, S.: A numerical investigation of shear instability, mixing and afterburn behind explosive blast waves. In: 47th AIAA Aerospace Sciences Meeting, 5–8 January, Orlando, USA, AIAA-2009-1530 (2009)

  7. Balakrishnan, K., Menon, S.: On the role of ambient reactive particles in the mixing and afterburning behind explosive blast waves. Combust. Sci. Technol. 182, 186–214 (2010)

    Article  Google Scholar 

  8. Balakrishnan, K., Menon, S.: Characterisation of the mixing layer resulting from detonations of heterogeneous explosive charges. Flow Turbul. Combust. 87, 639–671 (2011)

    Article  MATH  Google Scholar 

  9. Kuhl, A.L., Howard, M., Fried, L.: Thermodynamic model of afterburning in explosions. In: 34th International ICT Conference: Energetic Materials: Reactions of Propellants, Explosives and Pyrotechnics, 24–27 June, Karlsruhe, Germany (2003)

  10. Kuhl, A.L., Fergusson, R.E., Oppenheim, A.K.: Gasdynamics of combustion of TNT products in air. Arch. Combust. 19, 67–89 (1999)

    Google Scholar 

  11. Bell, J.B., Beckner, V.E., Kuhl, A.L.: Simulation of enhanced-explosive devices in chambers and tunnels. In: HPCMP Users Group Conference, IEEE (2007)

  12. Kuhl, A.L., Bell, J.B., Beckner, V.E., Khasainov, B.: Simulation of aluminum combustion and PETN afterburning in confined explosions. In: 21st International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), 23–27 July, Poitiers, France (2007)

  13. Kim, C.-K., Moon, J.G., Hwang, J.-S., Lai, M.-C., Im, K.-S.: Afterburning of TNT explosive products in air with aluminum particles. In: 46th AIAA Aerospace Sciences Meeting, 7–10 January, Reno, Nevada, AIAA-2008-1029 (2008)

  14. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  15. Fureby, C.: Comparison of flamelet and finite rate chemistry LES for premixed turbulent combustion. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, 8–11 January 2007, Reno, Nevada, AIAA-2007-1413 (2007)

  16. Grinstein, F.F., Kailasanath, K.K.: Three-dimensional numerical simulations of unsteady reactive square jets. Combust. Flame 100, 2–10 (1994)

    Article  Google Scholar 

  17. Johnston, I.A.: The Noble–Abel equation of state: thermodynamic derivations for ballistic modeling. Technical Report DSTO-TN-0670, Australian Government Department of Defence, Defence Science and Technology Organisation (2005)

  18. Smagorinsky, J.: General circulation experiments with the primitive equations. I: the basic experiment. Mon. Weather Rev. 91, 99–165 (1963)

    Article  Google Scholar 

  19. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  20. Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, W.W., Menon, S.: An unsteady incompressible Navier–Stokes solver for large eddy simulations of turbulent flows. Int. J. Numer. Methods Fluids 31, 983–1017 (1999)

    Article  MATH  Google Scholar 

  22. Cook, A.W., Cabot, W.H.: Hyperviscosity for shock–turbulence interactions. J. Comput. Phys. 203, 379–385 (2005)

    Article  MATH  Google Scholar 

  23. von Neumann, J., Richtmyer, R.D.: A method for the numerical calculations of hydrodynamical shocks. J. Appl. Phys. 21, 232–237 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  24. Caramana, E.J., Shashkov, M.J., Whalen, P.P.: Formulations of artificial viscosity for multi-dimensional shock wave computations. J. Comput. Phys. 144, 70–97 (1998)

    Google Scholar 

  25. Kraichnan, R.H.: Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 1521–1536 (1976)

    Google Scholar 

  26. Tran, T.D., Simpson, R.L., Maienschein, J., Tarver, C.M.: Thermal decomposition of trinitrotoluene (TNT) with a new one-dimensional time to explosion (ODTX) apparatus. In: 32nd International Conference of Institute of Chemistry Technology, Karlsruhe, Germany (2001)

  27. Pitz, W.J., Westbrook, C.K.: A detailed chemical kinetic model for gas phase combustion of TNT. Proc. Combust. Inst. 31, 2343–2351 (2007)

    Article  Google Scholar 

  28. Sabelnikov, V., Fureby, C.: Extended LES-PaSR model for simulation of turbulent combustion. In: Advances in Aerospace Sciences, vol. 4, pp. 156–169 (2012)

  29. Nogenmyr, K.J., Fureby, C., Bai, X.S., Linne, M.: Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame. Combust. Flame 156, 25–36 (2009)

    Article  Google Scholar 

  30. Fedina, E., Fureby, C.: A comparative study of flamelet and finite rate chemistry LES for an axisymmetric dump combustor. J. Turbul. 12, 1–20 (2010)

    Google Scholar 

  31. Fureby, C.: A comparative study of flamelet and finite rate chemistry LES for a swirl stabilized flame. ASME J. Eng. Gas Turbines Power 134, 041503 (2012). doi:10.1115/1.4004718

  32. Berglund, M., Fedina, E., Fureby, C., Tegner, J., Sabel’nikov, V.: Finite rate chemistry large-eddy simulation of self-ignition in a supersonic combustion ramjet. AIAA J. 48, 540–550 (2010)

    Article  Google Scholar 

  33. Fureby, C., Chapuis, M., Fedina, E., Karl, S.: CFD analysis of the HyShot II combustor. Proc. Combust. Inst. 33, 2399–2405 (2011)

  34. Chapuis, M., Fedina, E., Fureby, C., Hannemann, K., Karl, S., Schramm, J.: Martinez: a computational study of the HyShot II combustor performance. Proc. Combust. Inst. (2012). http://dx.doi.org/10.1016/j.proci.2012.07.014

  35. Tanahashi, M., Fujimura, M., Miyauchi, T.: Coherent fine scale eddies in turbulent premixed flames. In: Proceedings of the 28th International Symposium on Combustion, pp. 579–587 (2000)

  36. Yeung, P.K., Pope, S.B., Sawford, B.L.: Reynolds number dependence of lagrangian statistics in large numerical simulations of isotropic turbulence. J. Turbul. 7, N58 (2006)

    Article  MathSciNet  Google Scholar 

  37. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to CFD using object oriented techniques. Comput. Phys. 12, 620–632 (1997)

    Google Scholar 

  38. Fureby, C.: LES modeling of combustion for propulsion applications. In: Presented at the Applied Large Eddy Simulation Workshop at the Royal Society, London, UK. Philos. Trans. R. Soc. A (2008). doi:10.1098/rsta.2008.0271

  39. Fureby, C.: On LES and DES of wall bounded flows. Ercoftac Bull. Marsh Issue (2007)

  40. Drikakis, D., Hahn, M., Grinstein, F.F., DeVore, C.R., Fureby, C., Liefvendahl, M., Youngs, D.L.: Numerics for ILES: Limiting Algorithms, chap. 4a. Cambridge University Press, London (2007)

    Google Scholar 

  41. van Leer, B.: Towards the ultimate conservative difference schemes: a second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  42. Albada, G.D., van Leer, B., Roberts, W.W.: A comparative study of computational methods in cosmic gas dynamics. Aston. Astrophys. 108, 76–84 (1982)

    MATH  Google Scholar 

  43. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Google Scholar 

  44. Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. Ser. A 201, 192–196 (1950)

    Article  MATH  Google Scholar 

  45. Richtmyer, R.D.: Taylor instability in a shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960)

    Article  MathSciNet  Google Scholar 

  46. Conwep-Conventional Weapons: Collection of conventional weapons calculations based on T-5-855-1. In: Fundamentals of Protective Design for Conventional Weapons (1992)

  47. Baker, W.E.: Explosions in Air. University of Texas Press, Austin (1973)

    Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Swedish Armed Forces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fedina.

Additional information

Communicated by L. Bauwens.

This paper is based on work that was presented at the 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, Irvine, CA, USA, July 24–29, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedina, E., Fureby, C. Investigating ground effects on mixing and afterburning during a TNT explosion. Shock Waves 23, 251–261 (2013). https://doi.org/10.1007/s00193-012-0420-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-012-0420-9

Keywords

Navigation