Skip to main content
Log in

Comparison of different models for non-equilibrium CO2 flows in a shock layer near a blunt body

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The paper presents results of a numerical simulation of a supersonic two-dimensional (2D) viscous flow containing CO2 molecules near a spacecraft entering the Mars atmosphere. The gas–dynamic equations in the shock layer are coupled to the equations of non-equilibrium vibrational and chemical kinetics in the five-component mixture CO2/CO/O2/C/O. Transport and relaxation processes in the flow are studied on the basis of the rigorous kinetic theory methods; the developed transport algorithms are incorporated in the numerical scheme. The influence of the vibrational excitation of CO2 and chemical reactions on the gas flow parameters and heat transfer is analyzed. The obtained results are compared with those found using two simplified models based on the two-temperature and one-temperature vibrational distributions in CO2. The accuracy of the simplified models and the limits of their validity within the shock layer are evaluated. The effect of bulk viscosity in a flow near a re-entry body is discussed. The role of different diffusion processes, chemical reactions, and surface catalytic properties in a flow of the considered mixture in the shock layer is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson J.: Gasdynamic Lasers: An Introduction. Academic Press, New York (1976)

    Google Scholar 

  2. Armaly, B., Sutton, K.: Thermal conductivity of partially ionized gas mixtures. AIAA Paper 82-0469 (1982)

  3. Blottner, F., Jonson, M., Ellis, M.: Chemically reacting viscous flow program for multicomponent gas mixture. Technical report SC-RR-70-754, Sandia Laboratories (1970)

  4. Brun, R.: Transport properties in reactive gas flows. AIAA Paper 88-2655 (1988)

  5. Cenian A.: Study of nonequilibrium vibrational relaxation of CO2 molecules during adiabatic expansion in a supersonic nozzle. The Treanor distribution—existence and generation. Chem. Phys. 132, 41–48 (1989)

    Article  Google Scholar 

  6. Chikhaoui A., Kustova E.: Effect of strong excitation of CO2 asymmetric mode on transport properties. Chem. Phys. 216, 297–315 (1997)

    Article  Google Scholar 

  7. Ern A., Giovangigli V.: Volume viscosity of dilute polyatomic gas mixtures. Eur. J. Mech. B Fluids 14(5), 653–669 (1995)

    MATH  Google Scholar 

  8. Ferziger J., Kaper H.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)

    Google Scholar 

  9. Galkin V., Rusakov S.: On the theory of bulk viscosity and relaxation pressure. J. Appl. Math. Mech. 69(6), 943–954 (2005)

    Article  MathSciNet  Google Scholar 

  10. Gershenzon Y., Rozenshtein V., Umanskii S.: Diffusion of vibrationally excited molecules. Doklady Akademii Nauk SSSR 223(3), 629–632 (1975) (in Russian)

    Google Scholar 

  11. Golovachev Y.: Numerical Modeling of Viscous Flows In Shock Layer. Nauka, Moscow (1986) (in Russian)

    Google Scholar 

  12. Herzberg G.: Infrared and Raman Spectra of Polyatomic Molecules. D. Van Nostrand Company Inc., New York (1951)

    Google Scholar 

  13. Ibragimova L.: Rate coefficients of chemical reactions in the high-temperature gas CO2. Math. Model. 12(4), 3–19 (2000)

    MathSciNet  Google Scholar 

  14. Kustova, E.: On the role of bulk viscosity and relaxation pressure in non-equilibrium flows. In: Abe, T. (ed.) Rarefied Gas Dynamics: 26th International Symposium, AIP Conference Proceedings, vol. 1084, pp. 807–812 (2009)

  15. Kustova E., Nagnibeda E.: Transport properties of a reacting gas mixture with strong vibrational and chemical nonequilibrium. Chem. Phys. 233, 57–75 (1998)

    Article  Google Scholar 

  16. Kustova, E., Nagnibeda, E.: Nonequilibrium distributions in CO2 and their influence on the transport and thermodynamic properties. In: Rarefied Gas Dynamics 21, vol. 2, pp. 289–296. CEPADUES, Toulouse, France (1999)

  17. Kustova, E., Nagnibeda, E.: State-to-state theory of vibrational kinetics and dissociation in three-atomic gases. In: Bartel, T., Gallis, M. (eds.) Rarefied Gas Dynamics, AIP Conference Proceedings, vol. 585, pp. 620–627 (2001)

  18. Kustova E., Nagnibeda E.: On a correct description of a multi-temperature dissociating CO2 flow. Chem. Phys. 321, 293–310 (2006)

    Article  Google Scholar 

  19. Kustova, E., Nagnibeda, E., Chikhaoui, A.: Heat transfer and diffusion in mixtures containing CO2. In: Muntz, E.P., Ketsdever, A.D. (eds.) Rarefied Gas Dynamics, AIP Conference Proceedings, vol. 663, pp. 100–105 (2003)

  20. Likalter A.: On the vibrational distribution of polyatomic molecules. Prikl. Mekh. Tekn. Fiz. 4, 3–9 (1976) (in Russian)

    Google Scholar 

  21. Losev, S., Kozlov, P., Kuznezova, L., Makarov, V., Romanenko, Y., Surzhikov, S., Zalogin, G.: Radiation of CO2−N2−Ar mixture in a shock wave: experiment and modeling. In: Harris, R. (ed.) Proceedings of the Third European Symposium on Aerothermodynamics for Space Vehicles. ESTEC, Noordwijk, The Netherlands, ESA Publication Division, ESA SP-426. pp. 437–444 (1998)

  22. Makarov V., Losev S.: Application of the database of physical–chemical processes for the creation of the equations set for gases with chemical reactions and vibrational relaxation. Khim. Phizika 16(5), 29–43 (1997) (in Russian)

    Google Scholar 

  23. Marrone P., Treanor C.: Chemical relaxation with preferential dissociation from excited vibrational levels. Phys. Fluids 6(9), 1215–1221 (1963)

    Article  Google Scholar 

  24. Mason E., Monchick L.: Heat conductivity of polyatomic and polar gases. J. Chem. Phys. 36, 1622–1632 (1962)

    Article  Google Scholar 

  25. Mason E., Saxena S.: Approximation formula for the thermal conductivity of gas mixtures. Phys. Fluids 1(5), 361–369 (1958)

    Article  MathSciNet  Google Scholar 

  26. Mc Kenzie, R., Arnold, J.: Experimental and theoretical investigation of the chemical kinetics and non-equilibrium CN radiation behind shock waves in CO2−N2-mixtures. AIAA Paper, vol. 322 (1967)

  27. Monchick L., Pereira A., Mason E.: Heat conductivity of polyatomic and polar gases and gas mixtures. J. Chem. Phys. 42, 3241–3256 (1965)

    Article  Google Scholar 

  28. Nagnibeda E., Kustova E.: Nonequilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes. Springer, Berlin (2009)

    MATH  Google Scholar 

  29. Park C., Howe J., Jaffe R., Candler G.: Review of chemical-kinetic problems of future NASA missions, II: Mars entries. J. Thermophys. Heat Transfer 8(1), 9–23 (1994)

    Article  Google Scholar 

  30. Physical and Chemical Processes in Gas Dynamics: Physical and Chemical Kinetics and Thermodynamics. Volume II, Progress in Astronautics and Aeronautics, vol. I97 (2004)

  31. Shevelev Y.: Three-Dimensional Problems of Computational Fluid Dynamics. Nauka, Moscow (1986) (in Russian)

    Google Scholar 

  32. Shevelev, Y., Syzranova, N.: The influence of different models of chemical kinetics on supersonic CO2 flows near blunt bodies. Phys Chem Kinetics Gas Dyn 5. http://www.chemphys.edu.ru/media/files/2007-12-17-001.pdf (2007)

  33. Taylor R., Bitterman S.: Survey of vibrational relaxation data for process important in the CO2–N2 laser system. Rev. Mod. Phys. 41(1), 26–47 (1969)

    Article  Google Scholar 

  34. Thomson R.: The thermal conductivity of gases with vibrational internal energy. J. Phys. D Appl. Phys. 11, 2509–2516 (1978)

    Article  Google Scholar 

  35. Vesovic V., Wakeham W., Olchowy G., Sengers J., Watson J., Millat J.: The transport properties of carbon dioxide. J. Phys. Chem. Ref. Data 19(3), 763–808 (1990)

    Article  Google Scholar 

  36. Wilke C.: A viscosity equation for gas mixtures. J. Chem. Phys. 18, 517–519 (1950)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kustova.

Additional information

Communicated by H. Kleine and D. Zeitoun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kustova, E.V., Nagnibeda, E.A., Shevelev, Y.D. et al. Comparison of different models for non-equilibrium CO2 flows in a shock layer near a blunt body. Shock Waves 21, 273–287 (2011). https://doi.org/10.1007/s00193-011-0324-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-011-0324-0

Keywords

Navigation