Skip to main content

Advertisement

Log in

Effect of Dietary Choline Consumption on the Development of Urinary Urgency Incontinence in a Longitudinal Cohort of Women

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

The objective of this study was to determine whether differences in the cumulative dietary intake of choline, is associated with the risk of developing urge urinary incontinence (UUI).

Methods

This was an analysis within the Nurses’ Health Study (NHS) I and II. The main exposure was the cumulative daily intake for each choline-containing compound obtained from a detailed daily food frequency questionnaire. The primary outcome was UUI, defined as urine loss with a sudden feeling of bladder fullness or when a toilet is inaccessible, occurring >1/month. Cox proportional hazards regression models were used to calculate multivariate-adjusted relative risks and 95% confidence intervals (CIs) for the association between total choline and choline derivatives and risk of UUI. Fixed effects meta-analyses of results from NHSI and NHSII were performed for postmenopausal women only to obtain a pooled estimate of the impact of choline consumption on UUI.

Results

There were 33,273 participants in NHSI and 38,732 in NHSII who met all the criteria for inclusion in the analysis. The incidence of UUI was 9.41% (n=3,139) in NHSI and 4.25% (n=1,646) in NHSII. After adjusting for confounders choline was not found to be associated with UUI in postmenopausal women. However, in premenopausal women, relative to the lowest quartile, the highest quartile of consumption of total choline (aRR = 0.79, 95% CI: 0.64–0.99), free choline (aRR = 0.74, 95% CI: 0.58–0.94), and phosphocholine (aRR = 0.77, 95% CI: 0.61–0.96) were associated with a reduced risk of UUI.

Conclusions

Increased dietary choline consumption was associated with a reduced risk of UUI among premenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data used for this study are available through request submitted to Brigham and Women’s Hospital and the Harvard T.H. Chan School of Public Health.

References

  1. Stewart WF, Corey R, Herzog AR, et al. Prevalence of overactive bladder in women: results from the NOBLE program. Int Urogynecol J. 2001;12:S66.

    Google Scholar 

  2. Lukacz ES, Santiago-Lastra Y, Albo ME, Brubaker L. Urinary incontinence in women: a review. JAMA. 2017;318(16):1592–604. https://doi.org/10.1001/jama.2017.121.

    Article  PubMed  Google Scholar 

  3. Sakakibara R. Lower urinary tract dysfunction in patients with brain lesions. Handb Clin Neurol. 2015;130:269–87. https://doi.org/10.1016/B978-0-444-63247-0.00015-.

    Article  PubMed  Google Scholar 

  4. Lightner DJ, Gomelsky A, Souter L, Vasavada SP. Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: AUA/SUFU Guideline Amendment 2019. J Urol. 2019;202(3):558–63. https://doi.org/10.1097/JU.0000000000000309.

    Article  PubMed  Google Scholar 

  5. Maman K, Aballea S, Nazir J, et al. Comparative efficacy and safety of medical treatments for the management of overactive bladder: a systematic literature review and mixed treatment comparison. Eur Urol. 2014;65(4):755–65. https://doi.org/10.1016/j.eururo.2013.11.010.

    Article  CAS  PubMed  Google Scholar 

  6. Chacko S, Cortes E, Drake MJ, Fry CH. Does altered myogenic activity contribute to OAB symptoms from detrusor overactivity? ICI-RS 2013. Neurourol Urodyn. 2014;33(5):577–80. https://doi.org/10.1002/nau.22599.

    Article  CAS  PubMed  Google Scholar 

  7. Amundsen CL, Richter HE, Menefee SA, et al. OnabotulinumtoxinAvs sacral neuromodulation on refractory urgency urinary incontinence in women: a randomized clinical trial. JAMA. 2016;316:1366–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chancellor MB, Migliaccio-Walle K, Bramley TJ, Chaudhari SL, Corbell C, Globe D. Long-term patterns of use and treatment failure with anticholinergic agents for overactive bladder. Clin Ther. 2013;35(11):1744–51.

    Article  CAS  PubMed  Google Scholar 

  9. Tyagi P. Pathophysiology of the urothelium and detrusor. Can Urol Assoc J. 2011;5(5 Suppl 2):S128–30. https://doi.org/10.5489/cuaj.11181.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Smith AL. Understanding overactive bladder and urgency incontinence: what does the brain have to do with it? F1000Res. 2018;7:F1000 Faculty Rev-1869. https://doi.org/10.12688/f1000research.16418.1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tsetlin VI. Acetylcholine and acetylcholine receptors: textbook knowledge and new data. Biomolecules. 2020;10(6):852. https://doi.org/10.3390/biom10060852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wiedeman AM, Barr SI, Green TJ, Xu Z, Innis SM, Kitts DD. Dietary choline intake: current state of knowledge across the life cycle. Nutrients. 2018;10(10):1513. https://doi.org/10.3390/nu10101513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zeisel SH, Da Costa KA, Franklin PD, et al. Choline, an essential nutrient for humans. FASEB J. 1991;5(7):2093–8.

    Article  CAS  PubMed  Google Scholar 

  14. Yoo W, Zieba JK, Foegeding NJ, et al. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science. 2021;373(6556):813–8. https://doi.org/10.1126/science.aba3683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Farrell GC, Haczeyni F, Chitturi S. Pathogenesis of NASH: how metabolic complications of overnutrition favour lipotoxicity and pro-inflammatory fatty liver disease. Adv Exp Med Biol. 2018;1061:19–44. https://doi.org/10.1007/978-981-10-8684-7_3.

    Article  CAS  PubMed  Google Scholar 

  16. Sheyn D, Hijaz AK, Hazlett FE Jr, et al. Evaluation of urine choline levels in women with and without overactive bladder syndrome. Female Pelvic Med Reconstr Surg. 2020;26(10):644–8. https://doi.org/10.1097/SPV.0000000000000639.

    Article  PubMed  Google Scholar 

  17. Sheyn D, Hijaz AK, Hazlett FE Jr, et al. Evaluation of choline and acetylcholine levels in responders and nonresponders to anticholinergic therapy for overactive bladder syndrome. Female Pelvic Med Reconstr Surg. 2020;26(12):e91–6. https://doi.org/10.1097/SPV.0000000000000787.

    Article  PubMed  Google Scholar 

  18. Colditz GA, Manson JE, Hankinson SE. The Nurses’ Health Study: 20-year contribution to the understanding of health among women. J Womens Health. 1997;6(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  19. Michels KB, Willett WC. Self-administered semiquantitative food frequency questionnaires: patterns, predictors, and interpretation of omitted items. Epidemiology. 2009;20(2):295–301. https://doi.org/10.1097/EDE.0b013e3181931515.

    Article  PubMed  PubMed Central  Google Scholar 

  20. US Department of Agriculture: Agricultural Research Division. 2021 http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed 6 March 2021.

  21. Li Y, Wang DD, Chiuve SE, et al. Dietary phosphatidylcholine intake and type 2 diabetes in men and women. Diabetes Care. 2015;38(2):e13–4. https://doi.org/10.2337/dc14-2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Craig SA. Betaine in human nutrition. Am J Clin Nutr. 2004;80(3):539–49.

    Article  CAS  PubMed  Google Scholar 

  23. U.S. Department of Agriculture, Agricultural Research Service. FoodData Central. 2023. https://fdc.nal.usda.gov/. Accessed 27 November 2023.

  24. Grodstein F, Fretts R, Lifford K, Resnick N, Curhan G. Association of age, race, and obstetric history with urinary symptoms among women in the Nurses’ Health Study. Am J Obstet Gynecol. 2003;189(2):428–34. https://doi.org/10.1067/s0002-9378(03)00361-2.

    Article  PubMed  Google Scholar 

  25. Ridgway ND. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Crit Rev Biochem Mol Biol. 2013;48(1):20–38.

    Article  CAS  PubMed  Google Scholar 

  26. Ramstedt B, Slotte JP. Membrane properties of sphingomyelins. FEBS Lett. 2002;531(1):33–7. https://doi.org/10.1016/s0014-5793(02)03406-3.

    Article  CAS  PubMed  Google Scholar 

  27. Tani M, Hannun YA. Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Lett. 2007;581(7):1323–8. https://doi.org/10.1016/j.febslet.2007.02.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. https://doi.org/10.1056/NEJMoa1109400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 2005;208:2819–30.

    Article  CAS  PubMed  Google Scholar 

  31. Okamoto T, Hatakeyama S, Imai A, et al. Altered gut microbiome associated with overactive bladder and daily urinary urgency. World J Urol. 2021;39(3):847–53. https://doi.org/10.1007/s00345-020-03243-7.

    Article  CAS  PubMed  Google Scholar 

  32. Fischer LM, DaCosta KA, Kwock L, et al. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am J Clin Nutr. 2007;85(5):1275–85.

    Article  CAS  PubMed  Google Scholar 

  33. Resseguie M, Song J, Niculescu MD, da Costa KA, Randall TA, Zeisel SH. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. FASEB J. 2007;21(10):2622–32. https://doi.org/10.1096/fj.07-8227com.

    Article  CAS  PubMed  Google Scholar 

  34. Zia Y, Al Rajabi A, Mi S, et al. Hepatic expression of PEMT, but not dietary choline supplementation, reverses the protection against atherosclerosis in Pemt−/−/Ldlr−/− mice. J Nutr. 2018;148(10):1513–20. https://doi.org/10.1093/jn/nxy165.

    Article  PubMed  Google Scholar 

  35. Bradley CS, Brown JS, Van Den Eeden SK, Schembri M, Ragins A, Thom DH. Urinary incontinence self-report questions: reproducibility and agreement with bladder diary. Int Urogynecol J. 2011;22(12):1565–71. https://doi.org/10.1007/s00192-011-1503-3.

    Article  PubMed  Google Scholar 

  36. Chughtai B, Kavaler E, Lee R, Te A, Kaplan SA, Lowe F. Use of herbal supplements for overactive bladder. Rev Urol. 2013;15(3):93–6.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Nurses' Health Study I is supported by UM1 CA186107 and Nurses' Health Study II is supported by U01 CA 176726 from the National Institutes of Health, Bethesda, MD, USA.

Author information

Authors and Affiliations

Authors

Contributions

D.S.: development, design, manuscript writing; K.L.P.: design, analysis, manuscript writing; A.H.: manuscript writing, development; H.M.: manuscript writing, analysis; V.M.: manuscript writing, development; O.Z.: analysis, manuscript writing.

Corresponding author

Correspondence to David Sheyn.

Ethics declarations

Conflicts of interest

D.S.: research support—Renalis; consulting fee—Caldera; A.H.: ownership stake—Collamedix; S.T.M.: consulting fee—Boston Scientific, AbbVie. Y.B.C.: Chief Medical Officer Renalis. V.M. and H.M. have no conflicts of interest.

Additional information

Handling Editor: Tony Bazi

Editor in Chief: Maria A. Bortolini

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheyn, D., Momotaz, H., Hijaz, A. et al. Effect of Dietary Choline Consumption on the Development of Urinary Urgency Incontinence in a Longitudinal Cohort of Women. Int Urogynecol J 35, 667–676 (2024). https://doi.org/10.1007/s00192-024-05740-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-024-05740-4

Keywords

Navigation