Skip to main content
Log in

Recurrent urinary tract infection genetic risk: a systematic review and gene network analysis

  • Review Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

The development of recurrent urinary tract infections (rUTIs) is not completely understood. This review is aimed at investigating the connection between genetics and rUTIs and summarizing the results of studies that have documented variations in gene expression among individuals with rUTIs compared with healthy individuals.

Methods

A systematic search was conducted in Cochrane, Ovid, and PubMed, limiting the results to articles published between 1 January 2000, and 5 July 2022. Only studies comparing the difference in gene expression between individuals with rUTI and healthy individuals utilizing molecular techniques to measure gene expression in blood or urine samples were included in this systematic review. Gene network and pathways analyses were performed using Cytoscape software, with input data obtained from our systematic review of differentially expressed genes in rUTIs.

Results

Six studies met our criteria for inclusion. The selected studies used molecular biology methods to quantify gene expression data from blood specimens. The analysis revealed that gene expressions of CXCR1 and TLR4 decreased, whereas CXCR2, TRIF, and SIGIRR increased in patients with rUTI compared with healthy controls. The analysis demonstrated that the most significant pathways were associated with TLR receptor signaling and tolerance, I-kappa B kinase/NF-kappa B signaling, and MyD88-independent TLR signaling.

Conclusions

This systematic review uncovered gene expression variations in several candidate genes and identified a number of underlying biological pathways associated with rUTIs. These findings could shift the treatment and prevention strategies for rUTIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. 2019;11:1756287219832172.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Al-Badr A, Al-Shaikh G. Recurrent urinary tract infections management in women: a review. Sultan Qaboos Univ Med J. 2013;13(3):359–67.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anger J, Lee U, Ackerman AL, et al. Recurrent uncomplicated urinary tract infections in women: AUA/CUA/SUFU guideline. J Urol. 2019;202(2):282–9.

    Article  PubMed  Google Scholar 

  5. Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med. 2002;113(Suppl 1A):5s–13s.

    Article  PubMed  Google Scholar 

  6. Hopkins WJ, Heisey DM, Lorentzen DF, Uehling DT. A comparative study of major histocompatibility complex and red blood cell antigen phenotypes as risk factors for recurrent urinary tract infections in women. J Infect Dis. 1998;177(5):1296–301.

    Article  CAS  PubMed  Google Scholar 

  7. Grönberg-Hernández J, Sundén F, Connolly J, Svanborg C, Wullt B. Genetic control of the variable innate immune response to asymptomatic bacteriuria. PLoS One. 2011;6(11):e28289.

    Article  ADS  PubMed  Google Scholar 

  8. Ching C, Schwartz L, Spencer JD, Becknell B. Innate immunity and urinary tract infection. Pediatr Nephrol. 2020;35(7):1183–92.

    Article  PubMed  Google Scholar 

  9. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kellermeyer L, Harnke B, Knight S. Covidence and Rayyan. J Med Libr Assoc. 2018;106(4):580–3. https://doi.org/10.5195/jmla.2018.513.

    Article  PubMed Central  Google Scholar 

  11. Lo CK-L, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC Med Res Methodol. 2014;14(1):45.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Santos WMD, Secoli SR, Püschel VAA. The Joanna Briggs Institute approach for systematic reviews. Rev Lat Am Enfermagem. 2018;26:e3074.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(Suppl_2):W214–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Isali I, Mahran A, Khalifa AO, et al. Gene expression in stress urinary incontinence: a systematic review. Int Urogynecol J. 2020;31(1):1–14.

    Article  PubMed  Google Scholar 

  15. Mousavian Z, Khodabandeh M, Sharifi-Zarchi A, Nadafian A, Mahmoudi A. StrongestPath: a Cytoscape application for protein-protein interaction analysis. BMC Bioinformatics. 2021;22(1):352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frendéus B, Godaly G, Hang L, Karpman D, Svanborg C. Interleukin-8 receptor deficiency confers susceptibility to acute pyelonephritis. J Infect Dis. 2001;183(Suppl 1):S56–60.

    Article  PubMed  Google Scholar 

  17. Frendéus B, Godaly G, Hang L, Karpman D, Lundstedt AC, Svanborg C. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med. 2000;192(6):881–90.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lundstedt AC, McCarthy S, Gustafsson MC, et al. A genetic basis of susceptibility to acute pyelonephritis. PLoS One. 2007;2(9):e825.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Lundstedt AC, Leijonhufvud I, Ragnarsdottir B, Karpman D, Andersson B, Svanborg C. Inherited susceptibility to acute pyelonephritis: a family study of urinary tract infection. J Infect Dis. 2007;195(8):1227–34.

    Article  PubMed  Google Scholar 

  20. Smithson A, Sarrias MR, Barcelo J, et al. Expression of interleukin-8 receptors (CXCR1 and CXCR2) in premenopausal women with recurrent urinary tract infections. Clin Diagn Lab Immunol. 2005;12(12):1358–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ragnarsdóttir B, Samuelsson M, Gustafsson MC, Leijonhufvud I, Karpman D, Svanborg C. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J Infect Dis. 2007;196(3):475–84.

    Article  PubMed  Google Scholar 

  22. Raghuwanshi SK, Su Y, Singh V, Haynes K, Richmond A, Richardson RM. The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions. J Immunol. 2012;189(6):2824–32.

    Article  CAS  PubMed  Google Scholar 

  23. Morris SW, Nelson N, Valentine MB, et al. Assignment of the genes encoding human interleukin-8 receptor types 1 and 2 and an interleukin-8 receptor pseudogene to chromosome 2q35. Genomics. 1992;14(3):685–91.

    Article  CAS  PubMed  Google Scholar 

  24. Bertini R, Barcelos LS, Beccari AR, et al. Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 non-competitive allosteric inhibitor. Br J Pharmacol. 2012;165(2):436–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Godaly G, Hang L, Frendéus B, Svanborg C. Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol. 2000;165(9):5287–94.

    Article  CAS  PubMed  Google Scholar 

  26. Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev. 2003;16(4):637–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  28. Nahid MA, Satoh M, Chan EK. MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol. 2011;8(5):388–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Butcher SK, O'Carroll CE, Wells CA, Carmody RJ. Toll-like like receptors drive specific patterns of tolerance and training on restimulation of macrophages. Front Immunol. 2018;9:933.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2021;78(4):1233–61.

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301(5633):640–3.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Nilsen NJ, Vladimer GI, Stenvik J, et al. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling. J Biol Chem. 2015;290(6):3209–22.

    Article  CAS  PubMed  Google Scholar 

  33. Riva F, Bonavita E, Barbati E, Muzio M, Mantovani A, Garlanda C. TIR8/SIGIRR is an interleukin-1 receptor/Toll like receptor family member with regulatory functions in inflammation and immunity. Front Immunol. 2012;3:322.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li D, Zhang X, Chen B. SIGIRR participates in negative regulation of LPS response and tolerance in human bladder epithelial cells. BMC Immunol. 2015;16(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu W, Haque I, Venkatraman A, Menden HL, Mabry SM, Roy BC, et al. SIGIRR mutation in human necrotizing enterocolitis (NEC) disrupts STAT3-dependent microRNA expression in neonatal gut. Cell Mol Gastroenterol Hepatol. 2022;13(2):425–40.

    Article  CAS  PubMed  Google Scholar 

  36. Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front Microbiol. 2017;8:1566.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bien J, Sokolova O, Bozko P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. 2012;2012:681473.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yadav M, Zhang J, Fischer H, et al. Inhibition of TIR domain signaling by TcpC: MyD88-dependent and independent effects on Escherichia coli virulence. PLoS Pathog. 2010;6(9):e1001120.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dobrindt U, Wullt B, Svanborg C. Asymptomatic bacteriuria as a model to study the coevolution of hosts and bacteria. Pathogens. 2016;5(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Spencer JD, Schwaderer AL, Becknell B, Watson J, Hains DS. The innate immune response during urinary tract infection and pyelonephritis. Pediatr Nephrol. 2014;29(7):1139–49.

    Article  PubMed  Google Scholar 

  41. Ambite I, Lutay N, Stork C, Dobrindt U, Wullt B, Svanborg C. Bacterial suppression of RNA polymerase II-dependent host gene expression. Pathogens. 2016;5(3):49

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zanoni I, Granucci F. Role of CD14 in host protection against infections and in metabolism regulation. Front Cell Infect Microbiol. 2013;3:32.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schreiber HL t, Conover MS, et al. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections. Sci Transl Med. 2017;9(382):eaaf1283.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zaffanello M, Malerba G, Cataldi L, et al. Genetic risk for recurrent urinary tract infections in humans: a systematic review. J Biomed Biotechnol. 2010;2010:321082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sorić Hosman I, Cvitković Roić A, Lamot L. A systematic review of the (un)known host immune response biomarkers for predicting recurrence of urinary tract infection. Front Med (Lausanne). 2022;9:931717.

    Article  PubMed  Google Scholar 

  46. Zaffanello M, Tardivo S, Cataldi L, Fanos V, Biban P, Malerba G. Genetic susceptibility to renal scar formation after urinary tract infection: a systematic review and meta-analysis of candidate gene polymorphisms. Pediatr Nephrol. 2011;26(7):1017–29.

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

I.I.: manuscript writing, project development, analysis; T.R.W.: manuscript writing, abstract/paper review/analysis; A.F.B.: manuscript writing, abstract/paper review; C.H.W.W.: analysis, manuscript writing; F.R.S.: manuscript writing, analysis; R.P.: manuscript writing; A.H.: manuscript writing; D.S.: project development, manuscript writing, project oversight.

Corresponding author

Correspondence to David Sheyn.

Ethics declarations

Conflicts of interest

D.S.: Renalis (research support), Caldera (consulting fee); A.H.: Collamedix (ownership stake); R.P.: Johnson & Johnson, MaternaMD (consulting fee), ; none of the other authors report any conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 15 kb)

ESM 2

(XLSX 34 kb)

ESM 3

(XLSX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isali, I., Wong, T.R., Batur, A.F. et al. Recurrent urinary tract infection genetic risk: a systematic review and gene network analysis. Int Urogynecol J 35, 259–271 (2024). https://doi.org/10.1007/s00192-023-05671-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-023-05671-6

Keywords

Navigation