Skip to main content
Log in

Detection of small hydrological variations in gravity by repeated observations with relative gravimeters

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Recently, a new application of time-dependent gravity observations is emerging: the study of natural hydrological mass changes and their underlying processes. Complementary to GRACE data and continuous recordings with superconducting gravimeters, repeated observations with relative instruments on a local network may contribute to gain additional information on spatial changes in hydrology. The questions that need to be addressed are whether the results of these repeated measurements will be of sufficiently high resolution and accuracy, as well as how unique the information obtained will be. To examine this, a local gravity network with maximum point distances of 65 m was established in a hilly area around the Geodynamic Observatory Moxa, Germany. Using three to five LaCoste & Romberg relative gravimeters repeated measurements were carried out in a seasonal rhythm as well as at particular events like snowmelt or dryness in 17 campaigns between November 2004 and April 2007. The standard deviations obtained by least squares adjustment range from ±9 to ±14 nm/s2 for a gravity difference of one campaign, thus for gravity changes between two campaigns from ±13 to ±20 nm/s2. Between the points of the network, spatial gravity changes of up to 171 nm/s2 (139 nm/s2 between two successive campaigns) could be proven significantly. They correlate with changes in the local hydrological situation. Particularly, a steep slope next to the observatory is identified as a gravimetrically significant hydrological compartment. The results obtained contribute to an improved reduction of the local hydrological signal in continuous gravity recordings and provide constraints to hydrological models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe M, Takemoto S, Fukuda Y, Higashi T, Imanishi Y, Iwano S, Ogasawara S, Kobayashi Y, Takiguchi H, Dwipa S, Kusuma DS (2006) Hydrological effects on the superconducting gravimeter observation in Bandung. J Geodyn 41(1–3):288–295. doi:10.1016/j.jog.2005.08.030

    Article  Google Scholar 

  • Amalvict A, Hinderer J, Mäkinen J, Rosat S, Rogister Y (2004) Long-term and seasonal gravity changes at the Strasbourg station and their relation to crustal deformation and hydrology. J Geodyn 38(3–5):343–353. doi:10.1016/j.jog.2004.07.010

    Article  Google Scholar 

  • Atzbacher K, Gerstenecker C (1993) Secular gravity variations: recent crustal movements or scale factor changes. J Geodyn 18(1–4):107–121. doi:10.1016/0264-3707(93)90033-3

    Article  Google Scholar 

  • Bonatz M (1967) Der Gravitationseinfluß der Bodenfeuchte. Zeitschrift für Vermessungswesen 92: 135–139

    Google Scholar 

  • Bower D, Courtier N (1998) Precipitation effects on gravity measurements at the Canadian absolute gravity site. Phys Earth Planet Int 106(3–4):353–369. doi:10.1016/S0031-9201(97)00101-5

    Article  Google Scholar 

  • Boy JP, Hinderer J (2006) Study of the seasonal gravity signal in superconducting gravimeter data. J Geodyn 41(1–3):227–233. doi:10.1016/j.jog.2005.08.035

    Article  Google Scholar 

  • Crossley D, Xu S, van Dam T (1998) Comprehensive analysis of 2 years of SG data from Table Mountain, Colorado. In: Ducarme B, Pâquet P (eds) Proceedings of 13th International Symposium on Earth Tides, Observatoire Royal de Belgique. Schweizerbart’sche Verlagsbuchhandlung, Brussels, pp 659–668

    Google Scholar 

  • Ekman M, Mäkinen J, Midtsundstad A, Remmer O (1987) Gravity change and land uplift in Fennoscandia 1966–1984. J Geodesy 61(1):60–64. doi:10.1007/BF02520415

    Google Scholar 

  • Elstner C (1987) On common tendencies in repeated absolute and relative gravity measurements in the central part of the GDR. Gerl Beitr z Geophysik 96: 197–205

    Google Scholar 

  • Elstner C, Kautzleben H (1982) Results of annual gravity measurements along a W–E profile inside the GDR for the period 1970–1980. In: Proceedings of General Meeting of the IAG, Tokyo, pp 341–348

  • Ergintav S, Doğan U, Gerstenecker C, Çakmak R, Belgen A, Demirel H, Aydin C, Reilinger R (2007) A snapshot (2003 – 2005) of the 3D postseismic deformation for the 1999, M w  = 7.4 İzmit earthquake in the Marmara Region, Turkey, by first results of joint gravity and GPS monitoring. J Geodyn 44:1–18. doi:10.1016/j.jog.2006.12.005

    Article  Google Scholar 

  • Götze HJ, Lahmeyer B (1988) Application of three-dimensional interactive modelling in gravity and magnetics. Geophysics 53(8):1096–1108. doi:10.1190/1.1442546

    Article  Google Scholar 

  • Großmann W (1969) Grundzüge der Ausgleichsrechnung, 3rd edn. Springer, Berlin

    Google Scholar 

  • Harnisch G, Harnisch M (2006) Hydrological influences in long term gravimeter data series. J Geodyn 41(1–3):276–287. doi:10.1016/j.jog.2005.08.018

    Article  Google Scholar 

  • Harnisch M, Harnisch G (1999) Hydrological influences in the registrations of superconducting gravimeters. Bull Inf Marées Terrestres 131: 10 161–10 170

    Google Scholar 

  • Hasan S, Troch P, Boll J, Kroner C (2006) Modeling of the hydrological effect on local gravity at Moxa, Germany. J Hydrometeor 7(3):346–354. doi:10.1175/JHM488.1

    Article  Google Scholar 

  • Hokkanen T, Korhonen K, Virtanen H, Laine EL (2007a) Effects of the fracture water of bedrock on superconducting gravimeter data. Near Surf Geophys 5: 133–140

    Google Scholar 

  • Hokkanen T, Virtanen H, Pirttivaara M (2007b) On hydrogeological noise in superconducting gravimeter data. Near Surf Geophys 5: 125–132

    Google Scholar 

  • Imanishi Y (2000) Present status of SG T011 at Matsushiro, Japan. Cahiers Cent Euro Géodyn Séismol 17: 97–102

    Google Scholar 

  • Imanishi Y, Sato T, Higashi T, Sun W, Okubo S (2004) A network of superconducting gravimeters detects submicrogal coseismic gravity changes. Science 306:476–478. doi:10.1126/science.1101875

    Article  Google Scholar 

  • Imanishi Y, Kokubo K, Tatehata H (2006) Effect of underground water on gravity observation at Matsushiro, Japan. J Geodyn 41:221–226. doi:10.1016/j.jog.2005.08.031

    Article  Google Scholar 

  • Jentzsch G, Weise A, Rey C, Gerstenecker C (2004) Gravity changes and internal processes: Some results obtained from observations at three volcanoes. Pure Appl Geophys 161(7):1415–1431. doi:10.1007/s00024-004-2512-7

    Article  Google Scholar 

  • Kanngieser E, Kummer K, Torge W, Wenzel HG (1983) Das Gravimeter Eichsystem Hannover. Wiss Arb der Fachrichtung Vermessungswesen der Universität Hannover 120

  • Krause P, Fink M, Kroner C, Sauter M, Scholten T (2005) Hydrological processes in a small headwater catchment and their impact on gravimetric measurements. In: Proceedings of Headwater 2005, Bergen

  • Kroner C (2001) Hydrological effects on gravity data of the Geodynamic Observatory Moxa. J Geod Soc Japan 47(1): 353–358

    Google Scholar 

  • Kroner C, Jahr T (2006) Hydrological experiments around the superconducting gravimeter at Moxa Observatory. J Geodyn 41(1–3):268–275. doi:10.1016/j.jog.2005.08.012

    Article  Google Scholar 

  • Kroner C, Jahr T, Naujoks M, Weise A (2007) Hydrological signals in gravity—foe or friend?. In: Rizos C, Tregoning P (eds) Dynamic planet—monitoring and understanding a dynamic planet with geodetic and oceanographic tools, IAG Symposia Series, vol 130. Springer, Heidelberg, pp 504–510

    Google Scholar 

  • Lambert A, Beaumont C (1977) Nano variations in gravity due to seasonal groundwater movements; implications for the gravitational detection of tectonic movements. J Geophys Res 82: 297–305

    Article  Google Scholar 

  • Liard J, Gagnon C (2002) The new A-10 absolute gravimeter at the 2001 International comparison of absolute gravimeters. Metrologia 39(5):477–483. doi:10.1088/0026-1394/39/5/8

    Article  Google Scholar 

  • Mäkinen J, Tattari S (1988) Soil moisture and groundwater: two sources of gravity variations. Bull Inf Marées Terrestres 63: 103–110

    Google Scholar 

  • Mäkinen J, Tattari S (1991) The influence of variation in subsurface water storage on observed gravity. In: Proceedings of 11th International Symposium on Earth Tides, 1989, pp 457–471. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

  • Meurers B (2006) Long and short term hydrological effects on gravity in Vienna. Bull Inf Marées Terrestres 142: 11,343–11,352

    Google Scholar 

  • Meurers B, Van Camp M, Petermans T (2007) Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach station and application to Earth tide analysis. J Geodesy 81(11):703–712. doi:10.1007/s00190-007-0137-1

    Article  Google Scholar 

  • Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun HP, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geodesy 79(10–11):573–585. doi:10.1007/s00190-005-0014-8

    Article  Google Scholar 

  • Peter G, Klopping F, Berstis K (1995) Observing and modeling gravity changes caused by soil moisture and groundwater table variations with superconducting gravimeters in Richmond, Florida, U.S.A. Cahiers Cent Euro Géodynam Séismol 11: 147–159

    Google Scholar 

  • Sato T, Boy JP, Tamura Y, Matsumoto K, Asari K, Plag HP, Francis O (2006) Gravity tide and seasonal gravity variation at Ny-Ålesund, Svalbard in Arctic. J Geodyn 41(1–3):234–241. doi:10.1016/j.jog.2005.08.016

    Article  Google Scholar 

  • Timmen L, Gitlein O (2004) The capacity of the Scintrex Autograv CG-3M no. 4492 gravimeter for “absolute-scale” surveys. Rev Brasil Cartografia (Braz J Cartogr) 56(2): 89–95

    Google Scholar 

  • Torge W (1989) Gravimetry. Walter de Gruyter, Berlin

    Google Scholar 

  • Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J Geophys Res 111(B10403). doi:10.1029/2006JB004405

  • Virtanen H (2000) On the observed hydrological environmental effects on gravity at the Metsähovi station, Finland. Cahiers Cent Euro Géodyn Séismol 17: 169–176

    Google Scholar 

  • Virtanen H, Tervo M, Bilker-Koivula M (2006) Comparison of superconducting gravimeter observations with hydrological models of various spatial extents. Bull Inf des Marées Terrestres 142: 11,361–11,368

    Google Scholar 

  • Vitushkin L, Becker M, Jiang Z, Francis O, van Dam TM, Faller J, Chartier JM, Amalvict M, Bonvalot S, Debeglia N, Desogus S, Diament M, Dupont F, Falk R, Gabalda G, Gagnon C, Gattacceca T, Germak A, Hinderer J, Jamet O, Jeffries G, Käker R, Kopaev A, Liard J, Lindau A, Longuevergne L, Luck B, Maderal E, Mäkinen J, Meurers B, Mizushima S, Mrlina J, Newell D, Origlia C, Pujol E, Reinhold A, Richard P, Robinson I, Ruess D, Thies S, Van Camp M, Van Ruymbeke M, de Villalta Compagni M, Williams S (2002) Results of the Sixth International Comparison of Absolute Gravimeters, ICAG-2001. Metrologia 39(5):407–424. doi:10.1088/0026-1394/39/5/2

    Article  Google Scholar 

  • Wenzel HG (1993) Program package GRAVNA–Adjustment of gravity observations. Fortran-program, Geodetic Institute, University Karlsruhe (unpublished)

  • Wolf H (1997) Ausgleichsrechnung I, Formeln zur praktischen Anwendung, 3rd edn. Dümmlers, Bonn

    Google Scholar 

  • Zerbini S, Richter B, Negusini M, Romagnoli C, Simon D, Domenichini F, Schwahn W (2001) Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth Planet Sci Lett 192(3):267–279. doi:10.1016/S0012-821X(01)00445-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naujoks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naujoks, M., Weise, A., Kroner, C. et al. Detection of small hydrological variations in gravity by repeated observations with relative gravimeters. J Geod 82, 543–553 (2008). https://doi.org/10.1007/s00190-007-0202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-007-0202-9

Keywords

Navigation