Skip to main content
Log in

Fused deposition modeling: process, materials, parameters, properties, and applications

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In recent years, 3D printing technology has played an essential role in fabricating customized products at a low cost and faster in numerous industrial sectors. Fused deposition modeling (FDM) is one of the most efficient and economical 3D printing techniques. Various materials have been developed and studied, and their properties, such as mechanical, thermal, and electrical, have been reported. Numerous attempts to improve FDM products’ properties for applications in various sectors have also been reported. Still, their applications are limited due to the materials’ availability and properties compared to traditional fabrication methods. In 3D printing, the process parameters are crucial factors for improving the product's properties and reducing the machining time and cost. Researchers have recently investigated many approaches for expanding the range of materials and optimizing the FDM process parameters to extend the FDM process’s possibility into various industrial sectors. This paper reviews and explains various techniques used in 3D printing and the various polymers and polymer composites used in the FDM process. The list of mechanical investigations carried out for different materials, process parameters, properties, and the FDM process's potential application was discussed. This review is expected to indicate the materials and their optimized parameters to achieve enhanced properties and applications. Also, the article is highly anticipated to provide the research gaps to sustenance future research in the area of FDM technologies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source from google scholars)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

3DP:

Three-dimensional printing

ABS:

Acrylonitrile butadiene styrene

AM:

Additive manufacturing

ANOVA:

Analysis of variance

ASTM:

American Society for Testing and Material standards

β-TCP:

Beta-tricalcium phosphate

BJ:

Binder jetting

CAD:

Computer-aided design

CAM:

Computer-aided manufacturing

CF:

Carbon fiber

CFF:

Continuous flax fiber

CFR:

Continuous fiber reinforcement

CIJ:

Continuous inkjet

CNT:

Carbon nanotube

DCB:

Decellularized bone matrix

DED:

Direct energy deposition

DLF:

Direct light fabrication

DLP:

Digital light processing

DMD:

Direct metal deposition

DMLS:

Direct metal laser sintering

DOE:

Design of experiments

EBW:

Electron beam welding

FDM:

Fused deposition modeling

FF:

Flax fiber

FFF:

Fused filament fabrication

G-Code:

Geometric code

GF:

Glass fiber

HA:

Hydroxyapatite

HIPS:

High-impact polystyrene

IP:

Inkjet printing

ISO:

International Standard Organization

LENS:

Laser-engineered net shaping

LOM:

Laminated object manufacturing

M-Code:

Machine code

ME:

Material extrusion

MJ:

Material jetting

MWCNT :

Multi-walled carbon nanotubes

OMMT:

Organic montmorillonite

PA:

Nylon/polyamide

PBF:

Powder bed fusion

PBS:

Poly(butylene succinate)

PC:

Polycarbonate

PCL:

Polycaprolactone

PEEK:

Polyetheretherketone

PEKK:

Polyetherketoneketone

PHB:

Poly(3-hydroxybutyrate)

PLA:

Polylactic acid

PLGA:

Poly(lactic-co-glycolic acid)

PMMA:

Polymethyl methacrylate

PP:

Polypropylene

PPSF:

Polyphenylsulphone

PVA:

Polyvinyl alcohol

PVDF:

Polyvinylidene fluoride

PS:

Polystyrene

RP:

Rapid prototyping

RSM:

Response surface methodology

SBF:

Simulated body fluids

SCF:

Short carbon fiber

SL:

Sheet lamination

SLA:

Stereolithography

SLS:

Selective laser sintering

STL:

Standard tessellation language

TMP:

Thermomechanical pulp

TPU:

Thermoplastic polyurethanes

UAM:

Ultrasound additive manufacturing

VP:

Vat photopolymerization

μm:

Micrometer

$:

American dollars

MPa:

Megapascal

GPa:

Gigapascal

References

  1. ASTM (2009) ASTM International Committee F42 on Additive Manufacturing Technologies, ASTM F2792–10. Standard Terminology for Additive Manufacturing Technologies

  2. Medellin-Castillo HI, Zaragoza-Siqueiros J (2019) Design and manufacturing strategies for fused deposition modelling in additive manufacturing: a review. Chinese J Mech Eng 32(1). https://doi.org/10.1186/s10033-019-0368-0

  3. Subramaniam SR et al (2019) 3D printing: overview of PLA progress. AIP Conference Proceedings 2059. https://doi.org/10.1063/1.5085958

  4. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  Google Scholar 

  5. Bai X, Wu J, Liu Y, Xu Y, Yang D (2020) Exploring the characteristics of 3D printing global industry chain and value chain innovation network. Inf Dev 36(4):559–575. https://doi.org/10.1177/0266666919884348

    Article  Google Scholar 

  6. Vialva T (2020) 3D hubs 3D Printing trends report forecasts 24% growth in 3D printing industry over 5 years - 3D printing industry.https://3dprintingindustry.com/news/3d-hubs-3d-printing-trends-report-forecasts-24-growth-in-3d-printing-industry-over-5-years-167998/ (Accessed 23 Jan 2021)

  7. Wohlers Report 2021 (2021) Weakened growth for additive manufacturing - 3Dnatives.https://www.3dnatives.com/en/wohlers-report-2021-180320214/#! (Accessed 28 Mar 2021)

  8. Masood SH, Song WQ (2004) Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater Des 25(7):587–594. https://doi.org/10.1016/j.matdes.2004.02.009

    Article  Google Scholar 

  9. Marwah OM, Shukri MS, Mohamad EJ, Johar MA, Haq RH, Khirotdin RK (2017) Direct investment casting for pattern developed by desktop 3D printer. Matec Web of Conferences 135. https://doi.org/10.1051/matecconf/201713500036

  10. Vyavahare S, Teraiya S, Panghal D, Kumar S (2020) Fused deposition modelling: a review. Rapid Prototyp J 26(1):176–201. https://doi.org/10.1108/RPJ-04-2019-0106

    Article  Google Scholar 

  11. Kumar P, Ahuja IPS, Singh R (2012) Application of fusion deposition modelling for rapid investment casting - a review. Int J Mater Eng Innov 3(3–4):204–227. https://doi.org/10.1504/IJMATEI.2012.049254

    Article  Google Scholar 

  12. Bakar NSA, Alkahari MR, Boejang H (2010) Analysis on fused deposition modelling performance. J Zhejiang Univ Sci A 11(12):972–977. https://doi.org/10.1631/jzus.A1001365

    Article  Google Scholar 

  13. Mohd Pu’ad NAS, Abdul Haq RH, Mohd Noh H, Abdullah HZ, Idris MI, Lee TC (2018) Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications. Materials Today: Proceedings 29(2018):228–232. https://doi.org/10.1016/j.matpr.2020.05.535

  14. Sathies T, Senthil P, Anoop MS (2020) A review on advancements in applications of fused deposition modelling process. Rapid Prototyp J 26(4):669–687. https://doi.org/10.1108/RPJ-08-2018-0199

    Article  Google Scholar 

  15. Jin YA, Li H, He Y, Fu JZ (2015) Quantitative analysis of surface profile in fused deposition modelling. Addit Manuf 8:142–148. https://doi.org/10.1016/j.addma.2015.10.001

    Article  Google Scholar 

  16. Rajpurohit SR, Dave HK (2018) Effect of process parameters on tensile strength of FDM printed PLA part. Rapid Prototyp J 24(8):1317–1324. https://doi.org/10.1108/RPJ-06-2017-0134

    Article  Google Scholar 

  17. Lanzotti A, Grasso M, Staiano G, Martorelli M (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 21(5):604–617. https://doi.org/10.1108/RPJ-09-2014-0135

    Article  Google Scholar 

  18. Ziemian S, Okwara M, Ziemian CW (2015) Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp J 21(3):270–278. https://doi.org/10.1108/RPJ-09-2013-0086

    Article  Google Scholar 

  19. Chacón JM, Caminero MA, García-Plaza E, Núñez PJ (2017) Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143–157. https://doi.org/10.1016/j.matdes.2017.03.065

    Article  Google Scholar 

  20. Taufik M, Jain PK (2020) Part surface quality improvement studies in fused deposition modelling process: a review. Aust J Mech Eng 4846. https://doi.org/10.1080/14484846.2020.1723342

  21. Shofner ML, Lozano K, Rodríguez-Macías FJ, Barrera EV (2003) Nanofiber-reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89(11):3081–3090. https://doi.org/10.1002/app.12496

    Article  Google Scholar 

  22. Lee JY, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133. https://doi.org/10.1016/j.apmt.2017.02.004

    Article  Google Scholar 

  23. Mitchell A, Lafont U, Hołyńska M, Semprimoschnig CJ (2018) Additive manufacturing - a review of 4D printing and future applications. Addit Manuf 24(2017)606–626. https://doi.org/10.1016/j.addma.2018.10.038

  24. Zhang Y et al (2018) Additive manufacturing of metallic materials: a review. J Mater Eng Perform 27(1):1–13. https://doi.org/10.1007/s11665-017-2747-y

    Article  Google Scholar 

  25. Shahrubudin N, Lee TC, Ramlan R (2019) An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf 35:1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089

    Article  Google Scholar 

  26. Coogan TJ, Kazmer DO (2020) Prediction of interlayer strength in material extrusion additive manufacturing. Addit Manuf 35. https://doi.org/10.1016/j.addma.2020.101368

  27. Daminabo SC, Goel S, Grammatikos SA, Nezhad HY, Thakur VK (2020) Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Materials Today Chemistry 16. https://doi.org/10.1016/j.mtchem.2020.100248

  28. Braconnier DJ, Jensen RE, Peterson AM (2020) Processing parameter correlations in material extrusion additive manufacturing. Additive Manufacturing 31. https://doi.org/10.1016/j.addma.2019.100924

  29. Singh R et al (2020) Powder bed fusion process in additive manufacturing: an overview. Mater Today Proc 26:3058–3070. https://doi.org/10.1016/j.matpr.2020.02.635

    Article  Google Scholar 

  30. DebRoy T et al (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  31. Ribeiro KSB, Mariani FE, Coelho RT (2020) A study of different deposition strategies in direct energy deposition (DED) processes. Procedia Manufacturing 48:663–670. https://doi.org/10.1016/j.promfg.2020.05.158

    Article  Google Scholar 

  32. Yao XX et al (2020) Controlling the solidification process parameters of direct energy deposition additive manufacturing considering laser and powder properties. Comput Mater Sci 182. https://doi.org/10.1016/j.commatsci.2020.109788

  33. Meteyer S, Xu X, Perry N, Zhao YF (2014) Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia CIRP 15:19–25. https://doi.org/10.1016/j.procir.2014.06.030

    Article  Google Scholar 

  34. Ziaee M, Crane NB (2019) Binder jetting: a review of process, materials, and methods. Addit Manuf 28(May):781–801. https://doi.org/10.1016/j.addma.2019.05.031

    Article  Google Scholar 

  35. Dini F, Ghaffari SA, Jafar J, Hamidreza R, Marjan S (2020) A review of binder jet process parameters; powder, binder, printing and sintering condition. Met Powder Rep 75(2):95–100. https://doi.org/10.1016/j.mprp.2019.05.001

    Article  Google Scholar 

  36. Yap YL, Wang C, Sing SL, Dikshit V, Yeong WY, Wei J (2017) Material jetting additive manufacturing: an experimental study using designed metrological benchmarks. Precis Eng 50:275–285. https://doi.org/10.1016/j.precisioneng.2017.05.015

    Article  Google Scholar 

  37. Dilag J, Chen T, Li S, Bateman SA (2019) Design and direct additive manufacturing of three-dimensional surface micro-structures using material jetting technologies. Addit Manuf 27(January):167–174. https://doi.org/10.1016/j.addma.2019.01.009

    Article  Google Scholar 

  38. Palanikumar K, Mudhukrishnan M (2020) Technologies in additive manufacturing for fiber reinforced composite materials: a review. Curr Opin Chem Eng 28:51–59, 2020. https://doi.org/10.1016/j.coche.2020.01.001

  39. Westbeek S, Remmers JJ, Van Dommelen JA, Geers MG (2020) Multi-scale process simulation for additive manufacturing through particle filled vat photopolymerization. Comput Mater Sci 180. https://doi.org/10.1016/j.commatsci.2020.109647

  40. Stansbury JW, Idacavage MJ (2016) 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater 32(1):54–64. https://doi.org/10.1016/j.dental.2015.09.018

    Article  Google Scholar 

  41. Manapat JZ, Chen Q, Ye P, Advincula RC (2017) 3D printing of polymer nanocomposites via stereolithography. Macromol Mater Eng 302(9):1–13. https://doi.org/10.1002/mame.201600553

    Article  Google Scholar 

  42. Calignano F et al (2017) Overview on additive manufacturing technologies. Proc IEEE 105(4):593–612. https://doi.org/10.1109/JPROC.2016.2625098

    Article  Google Scholar 

  43. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050

    Article  Google Scholar 

  44. Zakeri S, Vippola M, Levänen E (2020) A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Add Manuf 35. https://doi.org/10.1016/j.addma.2020.101177

  45. Tiwari SK, Pande S, Agrawal S, Bobade SM (2015) Selection of selective laser sintering materials for different applications. Rapid Prototyp J 21(6):630–648. https://doi.org/10.1108/RPJ-03-2013-0027

    Article  Google Scholar 

  46. Geng LC, Ruan XL, Wu WW, Xia R, Fang DN (2019) Mechanical properties of selective laser sintering (SLS) additive manufactured chiral auxetic cylindrical stent. Exp Mech 59(6):913–925. https://doi.org/10.1007/s11340-019-00489-0

    Article  Google Scholar 

  47. Niu X et al (2019) Review of materials used in laser-aided additive manufacturing processes to produce metallic products. Front Mech Eng 14(3):282–298. https://doi.org/10.1007/s11465-019-0526-1

    Article  Google Scholar 

  48. Akilesh M, Elango PR, Devanand AA, Soundararajan R, Varthanan PA (2018) Optimization of selective laser sintering process parameters on surface quality 3D Print. Addit Manuf Technol pp. 141–157. https://doi.org/10.1007/978-981-13-0305-0_13

  49. De Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155. https://doi.org/10.1016/j.reactfunctpolym.2016.04.010

    Article  Google Scholar 

  50. Azizi Machekposhti S, Mohaved S, Narayan RJ (2019) Inkjet dispensing technologies: recent advances for novel drug discovery. Expert Opin Drug Discov 14(2):01–113. https://doi.org/10.1080/17460441.2019.1567489

  51. Guo Y, Patanwala HS, Bognet B, Ma AWK (2017) Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyp J 23(3):562–576. https://doi.org/10.1108/RPJ-05-2016-0076

    Article  Google Scholar 

  52. Li J, Rossignol F, Macdonald J (2015) Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab Chip 15(12):2538–2558. https://doi.org/10.1039/c5lc00235d

    Article  Google Scholar 

  53. Nayak L, Mohanty S, Nayak SK, Ramadoss A (2019) A review on inkjet printing of nanoparticle inks for flexible electronics. J Mater Chem C 7(29):8771–8795. https://doi.org/10.1039/c9tc01630a

    Article  Google Scholar 

  54. Dermeik B, Travitzky N (2020) Laminated object manufacturing of ceramic-based materials. Adv Eng Mater2000256. https://doi.org/10.1002/adem.202000256

  55. Bhatt PM et al (2019) A robotic cell for multi-resolution additive manufacturing. In 2019 International Conference on Robotics and Automation (ICRA) 2019(2018):2800–2807. https://doi.org/10.1109/ICRA.2019.8793730

  56. Weisensel L, Travitzky N, Sieber H, Greil P (2004) Laminated object manufacturing (LOM) of SiSiC composites. Adv Eng Mater 6(11):899–903. https://doi.org/10.1002/adem.200400112

    Article  Google Scholar 

  57. Mansfield B, Torres S, Yu T, Wu D (2019) A review on additive manufacturing of ceramics. ASME 2019 14th International Manufacturing Science and Engineering Conference (MSEC2019) 1:36–53. https://doi.org/10.1115/MSEC2019-2886

  58. Windsheimer H, Travitzky N, Hofenauer A, Greil P (2007) Laminated object manufacturing of preceramic-paper-derived Si-SiC composites. Adv Mater 19(24):4515–4519. https://doi.org/10.1002/adma.200700789

    Article  Google Scholar 

  59. Zindani D, Kumar K (2019) An insight into additive manufacturing of fiber reinforced polymer composite. International Journal of Lightweight Materials and Manufacture 2(4):267–278. https://doi.org/10.1016/j.ijlmm.2019.08.004

    Article  Google Scholar 

  60. Dizon JR, Espera Jr AH, Chen Q, Advincula RC (2018) Mechanical characterization of 3D-printed polymers 20:44–67

  61. Dul S, Fambri L, Pegoretti A (2016) Composites : Part A Fused deposition modelling with ABS – graphene nanocomposites 85:181–191

  62. Dizon JRC, Espera AH, Chen Q, Advincula RC (2018) Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002

    Article  Google Scholar 

  63. Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R (2018) FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym Test 69(May):157–166. https://doi.org/10.1016/j.polymertesting.2018.05.020

    Article  Google Scholar 

  64. Jiang J, Lou J, Hu G (2019) Effect of support on printed properties in fused deposition modelling processes. Virtual Phys Prototyp 14(4):308–315. https://doi.org/10.1080/17452759.2019.1568835

    Article  Google Scholar 

  65. Rochus P, Plesseria JY, Van Elsen M, Kruth JP, Carrus R, Dormal T (2007) New applications of rapid prototyping and rapid manufacturing (RP/RM) technologies for space instrumentation. Acta Astronaut 61(1–6):352–359. https://doi.org/10.1016/j.actaastro.2007.01.004

    Article  Google Scholar 

  66. Gkartzou E, Koumoulos EP, Charitidis CA (2017) Production and 3D printing processing of bio-based thermoplastic filament. Manuf Rev 4. https://doi.org/10.1051/mfreview/2016020

  67. Blok LG, Longana ML, Yu H, Woods BKS (2018) An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit Manuf 22:176–186. https://doi.org/10.1016/j.addma.2018.04.039

    Article  Google Scholar 

  68. Lalehpour A, Barari A (2016) Post processing for fused deposition modeling parts with acetone vapour bath. IFAC-PapersOnLine 49(31):42–48. https://doi.org/10.1016/j.ifacol.2016.12.159

    Article  Google Scholar 

  69. Chen YF, Wang YH, Tsai JC (2017) Enhancement of surface reflectivity of fused deposition modeling parts by post-processing. Opt Commun 430:479–485. https://doi.org/10.1016/j.optcom.2018.07.011

  70. Kumbhar NN, Mulay AV (2018) Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Inst Eng Ser C 99(4):481–487. https://doi.org/10.1007/s40032-016-0340-z

    Article  Google Scholar 

  71. Boparai KS, Singh R, Singh H (2016) Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyp J 22(2):281–299. https://doi.org/10.1108/RPJ-04-2014-0048

    Article  Google Scholar 

  72. McCullough EJ, Yadavalli VK (2013) Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. J Mater Process Technol 213(6):947–954. https://doi.org/10.1016/j.jmatprotec.2012.12.015

    Article  Google Scholar 

  73. Singh J, Singh R, Singh H (2017) Investigations for improving the surface finish of FDM based ABS replicas by chemical vapor smoothing process: a case study. Assem Autom 37(1):13–21. https://doi.org/10.1108/AA-12-2015-127

    Article  Google Scholar 

  74. Kulkarni P, Dutta D (2000) On the integration of layered manufacturing and material removal processes. J Manuf Sci Eng Trans ASME 122(1):100–108. https://doi.org/10.1115/1.538891

    Article  Google Scholar 

  75. Boschetto A, Bottini L, Veniali F (2016) Finishing of fused deposition modeling parts by CNC machining. Robot Comput Integr Manuf 41:92–101. https://doi.org/10.1016/j.rcim.2016.03.004

    Article  Google Scholar 

  76. Bryll K, Piesowicz E, Szymański P, Ślączka W, Pijanowski M (2018) Polymer composite manufacturing by FDM 3D printing technology. In MATEC Web of Conferences 237(6). https://doi.org/10.1051/matecconf/201823702006

  77. Salem Bala A, bin Wahab S (2016) Elements and materials improve the FDM products: a review. Adv Eng Forum 16:33–51. https://doi.org/10.4028/www.scientific.net/aef.16.33

  78. Valino AD, Dizon JR, Espera Jr AH, Chen Q, Messman J, Advincula RC (2019) Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci 98. https://doi.org/10.1016/j.progpolymsci.2019.101162

  79. Mazzanti V, Malagutti L, Mollica F (2019) FDM 3D printing of polymers containing natural fillers: a review of their mechanical properties. Polymers 11(7). https://doi.org/10.3390/polym11071094

  80. Singh R, Garg HK (2016) Fused deposition modeling – a state of art review and future applications. Ref Modul Mater Sci Mater Eng. https://doi.org/10.1016/b978-0-12-803581-8.04037-6

    Article  Google Scholar 

  81. Novakova-Marcincinova L, Novak-Marcincin J, Barna J, Torok J (2012) Special materials used in FDM rapid prototyping technology application. In 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES) pp. 73–76. https://doi.org/10.1109/INES.2012.6249805

  82. Coltelli MB et al (2019) Chitin nanofibrils in poly (lactic acid) (PLA) nanocomposites: Dispersion and thermo-mechanical properties. Int J Mol Sci 20(3). https://doi.org/10.3390/ijms20030504.

  83. Benwood C, Anstey A, Andrzejewski J, Misra M, Mohanty AK (2018) Improving the impact strength and heat resistance of 3D Printed models: structure, property, and processing correlationships during fused deposition modeling (FDM) of poly(lactic acid). ACS Omega 3(4):4400–4411. https://doi.org/10.1021/acsomega.8b00129

    Article  Google Scholar 

  84. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M (2019) International Journal of Biological Macromolecules Poly ( lactic acid ) blends : processing, properties and applications. Int J Biol Macromol 125:307–360. https://doi.org/10.1016/j.ijbiomac.2018.12.002

    Article  Google Scholar 

  85. Yu DM, Zhu CJ, Su J, Wang D (2011) Process analysis and application for rapid prototyping based on fused deposition modeling. Adv Mater Res 179–180:875–880. https://doi.org/10.4028/www.scientific.net/AMR.179-180.875

    Article  Google Scholar 

  86. Nguyen NA, Bowland CC, Naskar AK (2018) A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites. Appl Mater Today 12:138–152. https://doi.org/10.1016/j.apmt.2018.03.009

    Article  Google Scholar 

  87. Zhou YG, Zou JR, Wu HH, Xu BP (2020) Balance between bonding and deposition during fused deposition modeling of polycarbonate and acrylonitrile-butadiene-styrene composites. Polym Compos 41(1):60–72. https://doi.org/10.1002/pc.25345

    Article  Google Scholar 

  88. Shubham P, Sikidar A, Chand T (2016) The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling. Key Eng Mater 706:63–67. https://doi.org/10.4028/www.scientific.net/KEM.706.63

    Article  Google Scholar 

  89. Gao X, Zhang D, Wen X, Qi S, Su Y, Dong X (2019) Fused deposition modeling with polyamide 1012. Rapid Prototyp J 25(7):1145–1154. https://doi.org/10.1108/RPJ-09-2018-0258

    Article  Google Scholar 

  90. Lay M, Thajudin NL, Hamid ZA, Rusli A, Abdullah MK, Shuib RK (2019) Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos Part B Eng 176. https://doi.org/10.1016/j.compositesb.2019.107341

  91. Rahim TNAT, Abdullah AM, Akil HM, Mohamad D, Rajion ZA (2017) The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling. Express Polym Lett 11(12):963–982. https://doi.org/10.3144/expresspolymlett.2017.92

    Article  Google Scholar 

  92. Zhang X, Fan W, Liu T (2020) Fused deposition modeling 3D printing of polyamide-based composites and its applications. Compos Commun 21. https://doi.org/10.1016/j.coco.2020.100413

  93. Wang P, Zou B, Xiao H, Ding S, Huang C (2019) Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J Mater Process Technol 271(March):62–74. https://doi.org/10.1016/j.jmatprotec.2019.03.016

    Article  Google Scholar 

  94. Deng X, Zeng Z, Peng B, Yan S, Ke W (2018) Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials 11(2). https://doi.org/10.3390/ma11020216

  95. Xiaoyong S, Liangcheng C, Honglin M, Peng G, Zhanwei B, Cheng L (2017) Experimental analysis of high temperature PEEK materials on 3D printing test. In 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) pp. 13–16. https://doi.org/10.1109/ICMTMA.2017.0012

  96. Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J (2015) Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials (Basel) 8(9):5834–5846. https://doi.org/10.3390/ma8095271

    Article  Google Scholar 

  97. Arif MF, Kumar S, Varadarajan KM, Cantwell WJ (2018) Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater Des 146:249–259. https://doi.org/10.1016/j.matdes.2018.03.015

    Article  Google Scholar 

  98. Pakkanen J, Manfredi D, Minetola P, Iuliano L (2017) About the use of recycled or biodegradable filaments for sustainability of 3D printing. In International Conference on Sustainable Design and Manufacturing 68(3). https://doi.org/10.1007/978-3-319-57078-5

  99. Haq RHA et al (2018) Mechanical properties of PCL/PLA/PEG composite blended with different molecular weight (M W ) of PEG for Fused Deposition Modelling (FDM) filament wire. Int J Integr Eng 10(5):187–192. https://doi.org/10.30880/ijie.2018.10.05.028

    Article  MathSciNet  Google Scholar 

  100. Menčík P et al (2018) Effect of selected commercial plasticizers on mechanical, thermal, and morphological properties of poly (3-hydroxybutyrate)/poly (lactic acid)/plasticizer biodegradable blends for three-dimensional (3d) print. Materials (Basel) 11(10):1893

    Article  Google Scholar 

  101. Ou-Yang Q, Guo B, Xu J (2018) Preparation and characterization of poly (butylene succinate)/ polylactide blends for fused deposition modeling 3D printing. https://doi.org/10.1021/acsomega.8b02549

  102. Kim J et al (2012) Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication 4(2). https://doi.org/10.1088/1758-5082/4/2/025003

  103. Lei Y, Rai B, Ho KH, Teoh SH (2007) In vitro degradation of novel bioactive polycaprolactone-20% tricalcium phosphate composite scaffolds for bone engineering. Mater Sci Eng C 27(2):293–298. https://doi.org/10.1016/j.msec.2006.05.006

    Article  Google Scholar 

  104. Alizadeh-Osgouei M, Li Y, Wen C (2019) A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater 4(1):22–36. https://doi.org/10.1016/j.bioactmat.2018.11.003

    Article  Google Scholar 

  105. Liu Z, Lei Q, Xing S (2019) Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. J Mater Res Technol 8(5):3743–3753. https://doi.org/10.1016/j.jmrt.2019.06.034

    Article  Google Scholar 

  106. Abdullah AM, Rahim TN, Mohamad D, Akil HM, Rajion ZA (2017) Mechanical and physical properties of highly ZrO2 /β-TCP filled polyamide 12 prepared via fused deposition modelling (FDM) 3D printer for potential craniofacial reconstruction application. Mater Lett 189:307–309. https://doi.org/10.1016/j.matlet.2016.11.052

  107. Chen G, Chen N, Wang Q (2019) Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering. Compos Sci Technol 172(January):17–28. https://doi.org/10.1016/j.compscitech.2019.01.004

    Article  Google Scholar 

  108. Korpela J, Kokkari A, Korhonen H, Malin M, Närhi T, Seppälä J (2013) Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling.  J Biomed Mater Res: Part B Appl Biomater 101(4):610–619. https://doi.org/10.1002/jbm.b.32863

  109. Wu D, Spanou A, Diez-Escudero A, Persson C (2019) 3D-printed PLA/HA composite structures as synthetic trabecular bone: a feasibility study using fused deposition modeling. J Mech Behav Biomed Mater 103:103608. https://doi.org/10.1016/j.jmbbm.2019.103608

  110. Ayrilmis N, Kariz M, Kwon JH, Kitek Kuzman M (2019) Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. Int J Adv Manuf Technol 102(5–8):2195–2200. https://doi.org/10.1007/s00170-019-03299-9

  111. Liu H, He H, Peng X, Huang B, Li J (2019) Three-dimensional printing of poly(lactic acid) bio-based composites with sugarcane bagasse fiber: effect of printing orientation on tensile performance. Polym Adv Technol 30(4):910–922. https://doi.org/10.1002/pat.4524

    Article  Google Scholar 

  112. Zhao D, Cai X, Shou G, Gu Y, Wang P (2016) Study on the preparation of bamboo plastic composite intend for additive manufacturing. Key Eng Mater 667:250–258. https://doi.org/10.4028/www.scientific.net/KEM.667.250

    Article  Google Scholar 

  113. Daver F, Lee KPM, Brandt M, Shanks R (2018) Cork–PLA composite filaments for fused deposition modelling. Compos Sci Technol 168(October):230–237. https://doi.org/10.1016/j.compscitech.2018.10.008

    Article  Google Scholar 

  114. Tao Y, Wang H, Li Z, Li P, Shi SQ (2017) Development and application ofwood flour-filled polylactic acid composite filament for 3d printing. Materials (Basel) 10(4):1–6. https://doi.org/10.3390/ma10040339

    Article  Google Scholar 

  115. Vaidya AA, Collet C, Gaugler M, Lloyd-Jones G (2019) Integrating softwood biorefinery lignin into polyhydroxybutyrate composites and application in 3D printing. Mater Today Commun 19(February):286–296. https://doi.org/10.1016/j.mtcomm.2019.02.008

    Article  Google Scholar 

  116. Tran TN et al (2017) Cocoa shell waste biofilaments for 3D printing applications. Macromol Mater Eng 302(11):1–10. https://doi.org/10.1002/mame.201700219

    Article  Google Scholar 

  117. Frone AN et al (2020) Morpho-structural, thermal and mechanical properties of PLA/PHB/cellulose biodegradable nanocomposites obtained by compression molding, extrusion, and 3d printing. Nanomaterials 10(1). https://doi.org/10.3390/nano10010051

  118. Petroudy SD (2017) Physical and mechanical properties of natural fibers. Adv High Strength Nat Fibre Compos Constr pp. 59–83. https://doi.org/10.1016/B978-0-08-100411-1.00003-0

  119. Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater 41(13):1655–1669. https://doi.org/10.1177/0021998306069878

    Article  Google Scholar 

  120. Le Duigou A, Barbé A, Guillou E, Castro M (2019) 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Mater Des 180:4–11. https://doi.org/10.1016/j.matdes.2019.107884

    Article  Google Scholar 

  121. Hinchcliffe SA, Hess KM, Srubar WV (2016) Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials. Compos Part B Eng 95:346–354. https://doi.org/10.1016/j.compositesb.2016.03.089

    Article  Google Scholar 

  122. Depuydt D et al (2019) Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polym Compos 40(5):1951–1963. https://doi.org/10.1002/pc.24971

    Article  Google Scholar 

  123. Le Duigou A, Castro M, Bevan R, Martin N (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96:106–114. https://doi.org/10.1016/j.matdes.2016.02.018

    Article  Google Scholar 

  124. Milosevic M, Stoof D, Pickering KL (2017) Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites. J Compos Sci 1(1):7. https://doi.org/10.3390/jcs1010007

  125. Tarrés Q, Melbø JK, Delgado-Aguilar M, Espinach FX, Mutjé P, Chinga-Carrasco G (2018) Bio-polyethylene reinforced with thermomechanical pulp fibers: mechanical and micromechanical characterization and its application in 3D-printing by fused deposition modelling. Compos Part B Eng 153(April):70–77. https://doi.org/10.1016/j.compositesb.2018.07.009

    Article  Google Scholar 

  126. Thibaut C, Denneulin A, Rolland du Roscoat S, Beneventi D, Orgéas L, Chaussy D (2019) A fibrous cellulose paste formulation to manufacture structural parts using 3D printing by extrusion. Carbohydr Polym 212(January):119–128. https://doi.org/10.1016/j.carbpol.2019.01.076

    Article  Google Scholar 

  127. Andreeßen C, Steinbüchel A (2019) Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 103(1):143–157. https://doi.org/10.1007/s00253-018-9483-6

    Article  Google Scholar 

  128. Peng X (2019) Shape memory effect of three-dimensional printed products based on polypropylene / nylon 6 alloy. J Mater Sci 54(12):9235–9246. https://doi.org/10.1007/s10853-019-03366-2

    Article  Google Scholar 

  129. Chen S, Lu J, Feng J (2018) 3D-printable ABS blends with improved scratch resistance and balanced mechanical performance. Ind Eng Chem Res 57(11):3923–3931. https://doi.org/10.1021/acs.iecr.7b05074

    Article  Google Scholar 

  130. Singh S, Singh R (2020) Mechanical characterization and comparison of additive manufactured ABS, Polyflex™ and ABS/Polyflex™ blended functional prototypes. Rapid Prototyp J 26(2):225–237. https://doi.org/10.1108/RPJ-11-2017-0234

    Article  Google Scholar 

  131. Ahmed O, Hasan S, Lal J (2017) Experimental investigation of time-dependent mechanical properties of PC-ABS prototypes processed by FDM additive manufacturing process. Mater Lett 193:58–62. https://doi.org/10.1016/j.matlet.2017.01.104

    Article  Google Scholar 

  132. Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Composites : Part A Conductive 3D microstructures by direct 3D printing of polymer / carbon nanotube nanocomposites via liquid deposition modeling. Compos PART A 76:110–114. https://doi.org/10.1016/j.compositesa.2015.05.014

    Article  Google Scholar 

  133. Fafenrot S, Grimmelsmann N, Wortmann M, Ehrmann A (2017) Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials 10(10). https://doi.org/10.3390/ma10101199

  134. Sa’ude N, Masood SH, Nikzad M, Ibrahim M, Ibrahim MHI (2013) Dynamic mechanical properties of copper-ABS composites for FDM feedstock. Int J Eng Res Appl 3(3):1257–1263

    Google Scholar 

  135. Nikzad M, Masood SH, Sbarski I, Groth A (2009) A study of melt flow analysis of an ABS-iron composite in fused deposition modelling process. Tsinghua Sci Technol 14(June):29–37. https://doi.org/10.1016/S1007-0214(09)70063-X

    Article  Google Scholar 

  136. Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Short fiber reinforced composites for fused deposition modeling. Mater Sci Eng A 301(2):125–130. https://doi.org/10.1016/S0921-5093(00)01810-4

    Article  Google Scholar 

  137. Thomason JL (2002) The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos Part A Appl Sci Manuf 33(12):1641–1652. https://doi.org/10.1016/S1359-835X(02)00179-3

    Article  Google Scholar 

  138. Ferreira I, Machado M, Alves F, Marques AT (2019) A review on fibre reinforced composite printing via FFF. Rapid Prototyp J 25(6):972–988. https://doi.org/10.1108/RPJ-01-2019-0004

  139. Yao S, Jin F, Rhee KY, Hui D, Park S (2018) Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Compos Part B. https://doi.org/10.1016/j.compositesb.2017.12.007

    Article  Google Scholar 

  140. Li Q, Zhao W, Li Y, Yang W, Wang G (2019) Flexural properties and fracture behavior of CF/PEEK in orthogonal building orientation by FDM: microstructure and mechanism. Polymers 11(4). https://doi.org/10.3390/polym11040656

  141. Tekinalp HL et al (2014) Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos Sci Technol 105:144–150. https://doi.org/10.1016/j.compscitech.2014.10.009

    Article  Google Scholar 

  142. Spoerk M et al (2018) Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Compos A Appl Sci Manuf 113:95–104. https://doi.org/10.1016/j.compositesa.2018.06.018

    Article  Google Scholar 

  143. Matsuzaki R et al (2016) Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep 6(February):1–7. https://doi.org/10.1038/srep23058

    Article  Google Scholar 

  144. Justo J, Távara L, García-Guzmán L, París F (2018) Characterization of 3D printed long fibre reinforced composites. Compos Struct 185(2017):537–548. https://doi.org/10.1016/j.compstruct.2017.11.052

  145. Dickson AN, Barry JN, McDonnell KA, Dowling DP (2017) Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf 16:146–152. https://doi.org/10.1016/j.addma.2017.06.004

    Article  Google Scholar 

  146. Li N, Li Y, Liu S (2016) Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J Mater Process Technol 238:218–225. https://doi.org/10.1016/j.jmatprotec.2016.07.025

    Article  Google Scholar 

  147. Dong G, Tang Y, Li D, Zhao YF (2018) Mechanical properties of continuous kevlar fiber reinforced composites fabricated by fused deposition modeling process. Procedia Manuf 26:774–781

    Article  Google Scholar 

  148. Farahani RD, Dubé M, Therriault D (2016) Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater 28(28):5794–5821. https://doi.org/10.1002/adma.201506215

    Article  Google Scholar 

  149. Ivanov E et al (2019) PLA/Graphene/MWCNT composites with improved electrical and thermal properties suitable for FDM 3D printing applications. Appl Sci 9(6). https://doi.org/10.3390/app9061209

  150. Sezer HK, Eren O (2019) FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties. J Manuf Process 37(2018):339–347. https://doi.org/10.1016/j.jmapro.2018.12.004

  151. Weng Z, Wang J, Senthil T, Wu L (2016) Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater Des 102:276–283. https://doi.org/10.1016/j.matdes.2016.04.045

    Article  Google Scholar 

  152. Coppola B, Cappetti N, Di Maio L, Scarfato P, Incarnato L (2018) 3D printing of PLA/clay nanocomposites: Influence of printing temperature on printed samples properties. Materials (Basel) 11(10):1–17. https://doi.org/10.3390/ma11101947

    Article  Google Scholar 

  153. Kim H, Fernando T, Li M, Lin Y, Tseng TLB (2018) Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J Compos Mater 52(2):197–206. https://doi.org/10.1177/0021998317704709

    Article  Google Scholar 

  154. Torrado Perez AR, Roberson DA, Wicker RB (2014) Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J Fail Anal Prev 14(3):343–353. https://doi.org/10.1007/s11668-014-9803-9

  155. Tambrallimath V, Keshavamurthy R, Saravanabavan D, Koppad PG, Kumar GP (2019) Thermal behavior of PC-ABS based graphene filled polymer nanocomposite synthesized by FDM process. Compos Commun 15:129–134. https://doi.org/10.1016/j.coco.2019.07.009

  156. Masood SH, Mau K, Song WQ (2010) Tensile properties of processed FDM polycarbonate material. Mater Sci Forum 654–656:2556–2559. https://doi.org/10.4028/www.scientific.net/MSF.654-656.2556

    Article  Google Scholar 

  157. Yeo A, Wong WJ, Teoh SH (2010) Surface modification of PCL-TCP scaffolds in rabbit calvaria defects: evaluation of scaffold degradation profile, biomechanical properties and bone healing patterns. J Biomed Mater Res - Part A 93(4):1358–1367. https://doi.org/10.1002/jbm.a.32633

    Article  Google Scholar 

  158. Galantucci LM, Lavecchia F, Percoco G (2008) Study of compression properties of topologically optimized FDM made structured parts. CIRP Ann - Manuf Technol 57(1):243–246. https://doi.org/10.1016/j.cirp.2008.03.009

    Article  Google Scholar 

  159. Lin W, Shen H, Xu G, Zhang L, Fu J, Deng X (2018) Single-layer temperature-adjusting transition method to improve the bond strength of 3D-printed PCL/PLA parts. Compos Part A Appl Sci Manuf 115(September):22–30. https://doi.org/10.1016/j.compositesa.2018.09.008

    Article  Google Scholar 

  160. Peng X et al (2019) Shape memory effect of three-dimensional printed products based on polypropylene/nylon 6 alloy. J Mater Sci 54(12):9235–9246. https://doi.org/10.1007/s10853-019-03366-2

    Article  Google Scholar 

  161. Szykiedans K, Credo W, Osiński D (2017) Selected mechanical properties of PETG 3-D prints. Procedia Eng 177:455–461. https://doi.org/10.1016/j.proeng.2017.02.245

    Article  Google Scholar 

  162. Luo J, Wang H, Zuo D, Ji A, Liu Y (2018) Research on the application of MWCNTs/PLA composite material in the manufacturing of conductive composite products in 3D printing. Micromachines 9(12). https://doi.org/10.3390/mi9120635

  163. Wang C et al (2019) Reinforcement of polylactic acid for fused deposition modeling process with nano particles treated bamboo powder. Polymers 11(7). https://doi.org/10.3390/polym11071146

  164. Barkoula NM, Alcock B, Cabrera NO, Peijs T (2008) Flame-retardancy properties of intumescent ammonium poly (phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polym Polym Compos 16(2):101–113

  165. Wang P, Zou B, Ding S, Huang C, Shi Z, Ma Y, Yao P (2020) Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Compos B Eng 198:108175. https://doi.org/10.1016/j.compositesb.2020.108175

  166. Ou-Yang Q, Guo B, Xu J (2018) Preparation and characterization of poly(butylene succinate)/polylactide blends for fused deposition modeling 3D printing. ACS Omega 3(10):14309–14317. https://doi.org/10.1021/acsomega.8b02549

    Article  Google Scholar 

  167. Sa’ude N, Masood SH, Nikzad M, Ibrahim M, Ibrahim MHI (2013) Dynamic mechanical properties of copper-ABS composites for FDM feedstock. Int J Eng Res Appl 3(3):1257–1263

  168. Haq RH, Rahman MN, Ariffin AM, Hassan MF, Yunos MZ, Adzila S (2017) Characterization and mechanical analysis of PCL/PLA composites for FDM feedstock filament. IOP Conference Series: Materials Science and Engineering 226(1). https://doi.org/10.1088/1757-899X/226/1/012038

  169. Espalin D, Ramirez JA, Medina F, Wicker R (2014) Multi-material, multi-technology FDM: exploring build process variations. Rapid Prototyp J 20(3):236–244. https://doi.org/10.1108/RPJ-12-2012-0112

    Article  Google Scholar 

  170. Prashantha K, Roger F (2017) Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling. J Macromol Sci Part A Pure Appl Chem 54(1):24–29. https://doi.org/10.1080/10601325.2017.1250311

  171. Samykano M, Selvamani SK, Kadirgama K, Ngui WK, Kanagaraj G, Sudhakar K (2019) Mechanical property of FDM printed ABS: influence of printing parameters. Int J Adv Manuf Technol 102(9–12):2779–2796. https://doi.org/10.1007/s00170-019-03313-0

    Article  Google Scholar 

  172. Domingo-Espin M, Puigoriol-Forcada JM, Garcia-Granada AA, Llumà J, Borros S, Reyes G (2015) Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts. Mater Des 83:670–677. https://doi.org/10.1016/j.matdes.2015.06.074

    Article  Google Scholar 

  173. Camargo JC, Machado ÁR, Almeida EC, Silva EFMS (2019) Mechanical properties of PLA-graphene filament for FDM 3D printing. Int J Adv Manuf Technol 103(5–8):2423–2443. https://doi.org/10.1007/s00170-019-03532-5

    Article  Google Scholar 

  174. Senatov FS, Niaza KV, Zadorozhnyy MY, Maksimkin AV, Kaloshkin SD, Estrin YZ (2016) Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 57:139–148. https://doi.org/10.1016/j.jmbbm.2015.11.036

    Article  Google Scholar 

  175. Dawoud M, Taha I, Ebeid SJ (2016) Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. J Manuf Process 21:39–45. https://doi.org/10.1016/j.jmapro.2015.11.002

    Article  Google Scholar 

  176. Nabipour M, Akhoundi B, Bagheri Saed A (2019) Manufacturing of polymer/metal composites by fused deposition modeling process with polyethylene. J Appl Polym Sci 48717:1–9. https://doi.org/10.1002/app.48717

  177. Wang S et al (2019) Improving mechanical properties for extrusion-based additive manufacturing of poly(lactic acid) by annealing and blending with poly(3-hydroxybutyrate). Polymers (Basel) 11(9):1–13. https://doi.org/10.3390/polym11091529

    Article  Google Scholar 

  178. Stoof D, Pickering K, Zhang Y (2017) Fused deposition modelling of natural fibre/polylactic acid composites. J Compos Sci 1(1):8. https://doi.org/10.3390/jcs1010008

  179. Berretta S, Davies R, Shyng YT, Wang Y, Ghita O (2017) Fused deposition modelling of high temperature polymers: Exploring CNT PEEK composites. Polym Test 63:251–262. https://doi.org/10.1016/j.polymertesting.2017.08.024

    Article  Google Scholar 

  180. Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776. https://doi.org/10.1016/j.matdes.2015.06.053

    Article  Google Scholar 

  181. Dul S, Fambri L, Pegoretti A (2016) Fused deposition modelling with ABS–graphene nanocomposites. Compos A Appl Sci Manuf 85:181–191. https://doi.org/10.1016/j.compositesa.2016.03.013

    Article  Google Scholar 

  182. Dul S, Fambri L, Pegoretti A (2018) Filaments production and fused deposition modelling of ABS/carbon nanotubes composites. Nanomaterials 8(1). https://doi.org/10.3390/nano8010049

  183. Chen G, Chen N, Wang Q (2019) Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering. Compos Sci Technol 172:17–28. https://doi.org/10.1016/j.compscitech.2019.01.004

    Article  Google Scholar 

  184. Durgashyam K, Reddy MI, Balakrishna A, Satyanarayana K (2019) Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method. Mater Today: Proceedings 18:2052–2059. https://doi.org/10.1016/j.matpr.2019.06.082

  185. Mercado-Colmenero JM, Dolores La Rubia M, Mata-Garcia E, Rodriguez-Santiago M, Martin-Doñate C (2020) Experimental and numerical analysis for the mechanical characterization of petg polymers manufactured with fdm technology under pure uniaxial compression stress states for architectural applications. Polymers (Basel) 12(10):1–25. https://doi.org/10.3390/polym12102202

    Article  Google Scholar 

  186. Wach RA, Wolszczak P, Adamus‐Wlodarczyk A (2018) Enhancement of mechanical properties of FDM-PLA parts via thermal annealing. Macromol Mater Eng 303(9). https://doi.org/10.1002/mame.201800169

  187. Kang Y et al (2011) Enhanced mechanical performance and biological evaluation of a PLGA coated β-TCP composite scaffold for load-bearing applications. Eur Polym J 47(8):1569–1577. https://doi.org/10.1016/j.eurpolymj.2011.05.004

    Article  Google Scholar 

  188. Afrose MF, Masood SH, Iovenitti P, Nikzad M, Sbarski I (2016) Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Prog Addit Manuf 1(1–2):21–28. https://doi.org/10.1007/s40964-015-0002-3

    Article  Google Scholar 

  189. Ding S, Zou B, Wang P, Ding H (2019) Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym Test 78. https://doi.org/10.1016/j.polymertesting.2019.105948

  190. Yang L et al (2019) Effects of carbon nanotube on the thermal, mechanical, and electrical properties of PLA/CNT printed parts in the FDM process. Synth Met 253(2018):122–130. https://doi.org/10.1016/j.synthmet.2019.05.008

  191. Afrose MF, Masood SH, Nikzad M, Iovenitti P (2014) Effects of build orientations on tensile properties of PLA material processed by FDM. Adv Mater Res 1044–1045:31–34. https://doi.org/10.4028/www.scientific.net/AMR.1044-1045.31

    Article  Google Scholar 

  192. Yu N, Sun X, Wang Z, Zhang D, Li J (2020) Effects of auxiliary heat on warpage and mechanical properties in carbon fiber/ABS composite manufactured by fused deposition modeling. Mater Des 195. https://doi.org/10.1016/j.matdes.2020.108978

  193. Kariz M, Sernek M, Obućina M, Kuzman MK (2018) Effect of wood content in FDM filament on properties of 3D printed parts. Mater Today Commun 14:135–140. https://doi.org/10.1016/j.mtcomm.2017.12.016

    Article  Google Scholar 

  194. Menčík P et al (2018) Effect of selected commercial plasticizers on mechanical, thermal, and morphological properties of poly(3-hydroxybutyrate)/Poly(lactic acid)/plasticizer biodegradable blends for three-dimensional (3D) print. Materials 11(10). https://doi.org/10.3390/ma11101893

  195. Abbas T, Othman FM, Ali HB (2017) Effect of infill parameter on compression property in FDM process. Int J Eng Res Appl 7:16–19. https://www.ijera.comhttps://doi.org/10.9790/9622-0710021619

  196. Wang L, Gardner DJ (2017) Effect of fused layer modeling (FLM) processing parameters on impact strength of cellular polypropylene. Polymer (Guildf) 113:74–80. https://doi.org/10.1016/j.polymer.2017.02.055

    Article  Google Scholar 

  197. Hill N, Haghi M (2014) Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate. Rapid Prototyp J 20(3):221–227. https://doi.org/10.1108/RPJ-04-2013-0039

    Article  Google Scholar 

  198. Kesavarma S, Kong CK, Samykano M, Kadirgama K, Pandey AK (2020) Bending properties of 3D printed coconut wood-PLA composite. IOP Conference Series: Materials Science and Engineering 736(5). https://doi.org/10.1088/1757-899X/736/5/052031

  199. Aydogdu MO et al (2018) Comparative characterization of the hydrogel added PLA/β-TCP scaffolds produced by 3D bioprinting. Bioprinting 13(December):2019. https://doi.org/10.1016/j.bprint.2019.e00046

    Article  Google Scholar 

  200. Garg A, Bhattacharya A, Batish A (2017) Chemical vapor treatment of ABS parts built by FDM: analysis of surface finish and mechanical strength. Int J Adv Manuf Technol 89(5–8):2175–2191. https://doi.org/10.1007/s00170-016-9257-1

    Article  Google Scholar 

  201. Wang Q, Ji C, Sun L, Sun J, Liu J (2020) Cellulose nanofibrils filled poly (lactic acid) biocomposite filament for FDM 3D printing. Molecules 25(10):2319. https://doi.org/10.3390/molecules25102319

    Article  Google Scholar 

  202. Nadooshan AA, Daneshmand S, Aghanajafi C (2007) Application of RP technology with polycarbonate material for wind tunnel model fabrication. Int J Aerosp Mech Eng 1(8):371–376

    Google Scholar 

  203. Hanon MM, Marczis R, Zsidai L (2019) Anisotropy evaluation of different raster directions, spatial orientations, and fill percentage of 3D printed PETG tensile test specimens. In Key engineering materials, vol 821. Trans Tech Publications Ltd, pp 167–173

  204. Spoerk M et al (2018) Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Compos Part A Appl Sci Manuf 113:95–104. https://doi.org/10.1016/j.compositesa.2018.06.018

    Article  Google Scholar 

  205. Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS 8(4)

  206. Editor S, Davim JP, Shunmugam MS (2018) Lecture notes on multidisciplinary industrial engineering advances in unconventional machining and composites

  207. Anna V (2014) Ac Sc Ac Sc. Int J Refrig 43:36–49. https://doi.org/10.1016/j.compositesb.2018.03.029.This

    Article  Google Scholar 

  208. Mostafa N, Syed HM, Igor S, Andrew G (2009) A study of melt flow analysis of an ABS-iron composite in fused deposition modelling process. Tsinghua Sci Technol 14(SUPPL. 1):29–37. https://doi.org/10.1016/S1007-0214(09)70063-X

    Article  Google Scholar 

  209. Mercado-Colmenero JM, Rubio-Paramio MA, Dolores La Rubia M, Lozano-Arjona D, Martin-Doñate C (2019) A numerical and experimental study of the compression uniaxial properties of PLA manufactured with FDM technology based on product specifications. Int J Adv Manuf Technol 103(5–8):1893–1909. https://doi.org/10.1007/s00170-019-03626-0

    Article  Google Scholar 

  210. Francis V, Jain PK (2018) A filament modification approach for in situ ABS/OMMT nanocomposite development in extrusion-based 3D printing. J Brazilian Soc Mech Sci Eng 40(7). https://doi.org/10.1007/s40430-018-1282-6.

  211. Thibaut C, Denneulin A, Du Roscoat SR, Beneventi D, Orgéas L, Chaussy D (2019) A fibrous cellulose paste formulation to manufacture structural parts using 3D printing by extrusion. Carbohydr Polym 212(2018):119–128. https://doi.org/10.1016/j.carbpol.2019.01.076

  212. Yu J, Xu Y, Li S, Seifert GV, Becker ML (2017) Three-dimensional printing of nano hydroxyapatite/poly(ester urea) composite scaffolds with enhanced bioactivity. Biomacromol 18(12):4171–4183. https://doi.org/10.1021/acs.biomac.7b01222

    Article  Google Scholar 

  213. Schirmeister CG, Hees T, Licht EH, Mülhaupt R (2019) 3D printing of high density polyethylene by fused filament fabrication. Addit Manuf 28(May):152–159. https://doi.org/10.1016/j.addma.2019.05.003

    Article  Google Scholar 

  214. Jiao Z, Luo B, Xiang S, Ma H, Yu Y, Yang W (2019) 3D printing of HA / PCL composite tissue engineering scaffolds. Adv Ind Eng Polym Res 2(4):196–202. https://doi.org/10.1016/j.aiepr.2019.09.003

    Article  Google Scholar 

  215. Guerra AJ, Cano P, Rabionet M, Puig T, Ciurana J (2018) 3D-printed PCL/PLA composite stents: towards a new solution to cardiovascular problems. Materials (Basel) 11(9):1–13. https://doi.org/10.3390/ma11091679

    Article  Google Scholar 

  216. Nikzad M, Masood SH, Sbarski I (2011) Thermo-mechanical properties of a highly filled polymeric composites for Fused deposition modeling. Mater Des 32(6):3448–3456. https://doi.org/10.1016/j.matdes.2011.01.056

    Article  Google Scholar 

  217. Groza JR, Shackelford JF (eds) (2007) Materials processing handbook. CRC press

  218. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3(1):42–53. https://doi.org/10.1007/s40436-014-0097-7

    Article  Google Scholar 

  219. Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA (2000) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 15(1):107–122. https://doi.org/10.1080/10426910008912976

    Article  Google Scholar 

  220. Chouksey A (2012) Study of parametric optimization of fused deposition modelling process using response surface methodology. Doctoral dissertation

  221. Chaturvedi V (2009) Parametric optimization of fused deposition modeling using response surface methodology. Doctoral dissertation

  222. Nancharaiah T, Raju DR, Raju VR (2010) An experimental investigation on surface quality and dimensional accuracy of FDM components. Int J Emerg Technol 1(2):106–111

    Google Scholar 

  223. Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of fused deposition modelling process using the grey Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part B 224(1):135–145. https://doi.org/10.1243/09544054JEM1565

  224. Arumaikkannu SGG, Uma Maheshwaraa N (2001) A genetic algorithm with design of experiments approach to predict the optimal process parameters for FDM p. 43 

  225. Srinivasan R, Kumar KN, Ibrahim AJ, Anandu KV, Gurudhevan R (2020) Impact of fused deposition process parameter (infill pattern) on the strength of PETG part. Materials Today: Proceedings 27:1801–1805. https://doi.org/10.1016/j.matpr.2020.03.777

  226. Lužanin O, Movrin D, Plančak M (2014) Effect of layer thickness, deposition angle, and infill on maximum flexural force in FDM-built specimens. J Technol Plast 39(1):49–58

    Google Scholar 

  227. Vinitha M, Rao AN, Mallik MK (2012) Optimization of speed parameters in burnishing of samples fabricated by fused deposition modeling. Int J Mech Ind Eng 2(2):10–12

    Google Scholar 

  228. van Manen T, Janbaz S, Zadpoor AA (2018) Programming the shape-shifting of flat soft matter 21(2)

  229. Rayegani F, Onwubolu GC (2014) Fused deposition modelling (fdm) process parameter prediction and optimization using group method for data handling (gmdh) and differential evolution (de). Int J Adv Manuf Technol 73(1–4):509–519. https://doi.org/10.1007/s00170-014-5835-2

    Article  Google Scholar 

  230. Vasudevarao B, Natarajan DP, Henderson M, Razdan A (2000) Sensitivity of RP surface finish to process parameter variation 251. In: 2000 International Solid Freeform Fabrication Symposium

  231. Mohamed OA, Masood SH, Bhowmik JL (2017) Experimental investigation of creep deformation of part processed by fused deposition modeling using definitive screening design. Addit Manuf 18:164–170. https://doi.org/10.1016/j.addma.2017.10.013

    Article  Google Scholar 

  232. Peng A, Xiao X, Yue R (2014) Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Technol 73(1–4):87–100. https://doi.org/10.1007/s00170-014-5796-5

    Article  Google Scholar 

  233. Sood AK, Ohdar RK, Mahapatra SS (2009) Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Mater Des 30(10):4243–4252. https://doi.org/10.1016/j.matdes.2009.04.030

    Article  Google Scholar 

  234. Montero M, Roundy S, Odell D, Ahn S-H, Wright PK (2001) Material characterization of fused deposition modeling (FDM) ABS by designed experiments. Soc Manuf Eng 10(13552540210441166):1–21

    Google Scholar 

  235. Durgun I, Ertan R (2014) Experimental investigation of FDM process for improvement of mechanical properties and production cost. Rapid Prototyp J 20(3):228–235. https://doi.org/10.1108/RPJ-10-2012-0091

    Article  Google Scholar 

  236. Gurrala PK, Regalla SP (2012) Optimization of support material and build time in fused deposition modeling (FDM). Appl Mech Mater 110–116:2245–2251. https://doi.org/10.4028/www.scientific.net/AMM.110-116.2245

  237. Alafaghani A, Qattawi A (2018) Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method. J Manuf Process 36(June):164–174. https://doi.org/10.1016/j.jmapro.2018.09.025

    Article  Google Scholar 

  238. Peace GS (1993) Taguchi methods: a hands-on approach. Addison Wesley Publishing Company

  239. Roy RK (2010) A primer on the Taguchi method. Society of Manufacturing Engineers

  240. Mohamed OA, Masood SH, Bhowmik JL (2017) Process parameter optimization of viscoelastic properties of FDM manufactured parts using response surface methodology. Mater Today Proc 4(8):8250–8259. https://doi.org/10.1016/j.matpr.2017.07.167

    Article  Google Scholar 

  241. Zhang J, Peng A (2012) Process-parameter optimization for fused deposition modeling based on Taguchi method. Adv Mater Res 538–541:444–447. https://doi.org/10.4028/www.scientific.net/AMR.538-541.444

    Article  Google Scholar 

  242. Nancharaiah T (2011) Optimization of process parameters in fdm process using design of experiments. Int J Emerg Technol 2(1):100–102

  243. Mohamed OA, Masood SH, Bhowmik JL (2016) Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design. Appl Math Model 40(23–24):10052–10073. https://doi.org/10.1016/j.apm.2016.06.055

    Article  MATH  Google Scholar 

  244. Nagendra J, Prasad MSG (2020) FDM process parameter optimization by Taguchi technique for augmenting the mechanical properties of nylon–aramid composite used as filament material. J Inst Eng Ser C 101(2):313–322. https://doi.org/10.1007/s40032-019-00538-6

    Article  Google Scholar 

  245. Wankhede V, Jagetiya D, Joshi A, Chaudhari R (2019) Experimental investigation of FDM process parameters using Taguchi analysis. Mater Today Proc 27:2117–2120. https://doi.org/10.1016/j.matpr.2019.09.078

    Article  Google Scholar 

  246. Dong G, Wijaya G, Tang Y, Zhao YF (2018) Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures. Addit Manuf 19:62–72. https://doi.org/10.1016/j.addma.2017.11.004

    Article  Google Scholar 

  247. Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1):287–295. https://doi.org/10.1016/j.matdes.2009.06.016

    Article  Google Scholar 

  248. Sood AK, Ohdar RK, Mahapatra SS (2012) Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J Adv Res 3(1):81–90. https://doi.org/10.1016/j.jare.2011.05.001

    Article  Google Scholar 

  249. Letcher T, Waytashek M (2016) Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. InASME International Mechanical Engineering Congress and Exposition pp. 1–8

  250. Türk DA, Brenni F, Zogg M, Meboldt M (2017) Mechanical characterization of 3D printed polymers for fiber reinforced polymers processing. Mater Des 118:256–265. https://doi.org/10.1016/j.matdes.2017.01.050

    Article  Google Scholar 

  251. Letcher T (2017) Imece2015–52634 experimental study of mechanical properties of additively. ASME 2015 International Mechanical Engineering Congress and Exposition (IMECE2015), Houston 2015:1–8 

  252. Reese R (2015) Imece2015–52209 mechanical properties of additively manufactured peek components using fused. ASME 2015 International Mechanical Engineering Congress and Exposition 2015:1–11

  253. Fatimatuzahraa AW, Farahaina B, Yusoff WA (2011) The effect of employing different raster orientations on the mechanical properties and microstructure of Fused Deposition Modeling parts. 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA 2011). https://doi.org/10.1109/ISBEIA.2011.6088811

  254. Shojib Hossain M, Espalin D, Ramos J, Perez M, Wicker R (2014) Improved mechanical properties of fused deposition modeling-manufactured parts through build parameter modifications. J. Manuf. Sci. Eng. Trans. ASME 136(6). https://doi.org/10.1115/1.4028538

  255. Ognjan L, Vera G, Ivan R, Simon M (2017) Investigating impact of five build parameters on the maximum flexural force in FDM specimens – a definitive screening design approach. Rapid Prototyp J 23(6):1088–1098. https://doi.org/10.1108/RPJ-09-2015-0116

    Article  Google Scholar 

  256. Caminero MA, Chacón JM, García-Moreno I, Rodríguez GP (2018) Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling Compos B Eng 148(93):103. https://doi.org/10.1016/j.compositesb.2018.04.054

  257. Liu Z, Lei Q, Xing S (2019) Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. J Market Res 8(5):3743–3753. https://doi.org/10.1016/j.jmrt.2019.06.034

    Article  Google Scholar 

  258. Corcione CE et al (2019) Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceram Int 45(2):2803–2810. https://doi.org/10.1016/j.ceramint.2018.07.297

  259. Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng 80:369–378. https://doi.org/10.1016/j.compositesb.2015.06.013

    Article  Google Scholar 

  260. Caminero MA, Chacón JM, García-Moreno I, Rodríguez GP (2018) Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Compos Part B Eng 148(March):93–103. https://doi.org/10.1016/j.compositesb.2018.04.054

    Article  Google Scholar 

  261. Tekinalp HL et al (2018) High modulus biocomposites via additive manufacturing: cellulose nanofibril networks as ‘microsponges.’ Compos Part B Eng 173(May):2019. https://doi.org/10.1016/j.compositesb.2019.05.028

    Article  Google Scholar 

  262. Stoof D, Pickering K, Zhang Y (2017) Fused deposition modelling of natural fibre/polylactic acid composites. J Compos Sci 1(2):8. https://doi.org/10.3390/jcs1010008

  263. Yang L et al (2019) Effects of carbon nanotube on the thermal, mechanical, and electrical properties of PLA/CNT printed parts in the FDM process. Synth Met 253(May):122–130. https://doi.org/10.1016/j.synthmet.2019.05.008

    Article  Google Scholar 

  264. Sezer HK, Eren O (2019) FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties. J Manuf Process 37(2018):339–347. https://doi.org/10.1016/j.jmapro.2018.12.004

  265. Xu N et al (2014) 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl Mater Interfaces 6(17):14952–14963. https://doi.org/10.1021/am502716t

    Article  Google Scholar 

  266. Nyberg E, Rindone A, Dorafshar A, Grayson WL (2017) Comparison of 3D-printed poly-ϵ-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, Bio-Oss, or decellularized bone matrix. Tissue Eng - Part A 23(11–12):503–514. https://doi.org/10.1089/ten.tea.2016.0418

    Article  Google Scholar 

  267. Van Hemelrijck D, Strantza M, Angelis D, De Baere D, Guillaume P (2016) Additive manufacturing: the next industrial revolution? In: 23rd International Acoustic Emission Symposium, the Inauguration Conference of International Institute of Innovative Acoustic Emission & the 8th International Conference on Acoustic Emission. pp 275–280. Accessed 13 Nov 2020

  268. Vashishtha VK (2011) Advancement of rapid prototyping in aerospace industry -a review. Sci Technol 3(3):2486–2493

    Google Scholar 

  269. Ridha Ben Mansour ZA, Mohamed O (2014) Ac Sc Ac Sc. Int J Refrig 43:36–49. https://doi.org/10.1016/j.compositesb.2017.09.003.This

  270. Turco E, Golaszewski M, Giorgio I, Annibale FD (2017) AC. https://doi.org/10.1016/j.compositesb.2017.02.039.This

  271. Chua CK, Leong KF, Lim CS (2010) Rapid prototyping: principles and applications (with companion CD-ROM). World Scientific Publishing Company

  272. Hiemenz J (2013) Additive Manufacturing trends in aerospace. Addit Manuf p. 6. [Online]. Available: https://www.stratasys.com

  273. Najmon JC, Raeisi S, Tovar A (2019) Review of additive manufacturing technologies and applications in the aerospace industry. Elsevier Inc.

  274. MacDonald E et al (2014) 3D printing for the rapid prototyping of structural electronics. IEEE Access 2:234–242. https://doi.org/10.1109/ACCESS.2014.2311810

    Article  Google Scholar 

  275. Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA (2012) A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS One 7(11):1–6. https://doi.org/10.1371/journal.pone.0049365

    Article  Google Scholar 

  276. Manzanares Palenzuela CL, Novotný F, Krupička P, Sofer Z, Pumera M (2018) 3D-printed graphene/polylactic acid electrodes promise high sensitivity in electroanalysis. Anal Chem 90(9):5753–5757. https://doi.org/10.1021/acs.analchem.8b00083

  277. dos Santos PL et al (2019) Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: Role of exposed graphene sheets. Sensors Actuators B Chem 281(2018):837–848. https://doi.org/10.1016/j.snb.2018.11.013

  278. Junpha J, Wisitsoraat A, Prathumwan R, Chaengsawang W, Khomungkhun K, Subannajui K (2020) Electronic tongue and cyclic voltammetric sensors based on carbon nanotube/polylactic composites fabricated by fused deposition modelling 3D printing. Mater Sci Eng C 117. https://doi.org/10.1016/j.msec.2020.111319

  279. Dawoud M, Taha I, Ebeid SJ (2017) Strain sensing behaviour of 3D printed carbon black filled ABS. J Manuf Process 35(2017):337–342. https://doi.org/10.1016/j.jmapro.2018.08.012

  280. Meaney JF, Goyen M (2007) Recent advances in contrast-enhanced magnetic resonance angiography. Eur Radiol 17

  281. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958

    Article  Google Scholar 

  282. Lam CXF, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH (2009) Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 90(3):906–919. https://doi.org/10.1002/jbm.a.32052

    Article  Google Scholar 

  283. Teixeira BN, Aprile P, Mendonca RH, Kelly DJ, Thiré RM (2019) Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res Part B Appl Biomater 107(1):37–49. https://doi.org/10.1002/jbm.b.34093

  284. Rasoulianboroujeni M et al (2019) Development of 3D-printed PLGA/TiO 2 nanocomposite scaffolds for bone tissue engineering applications. Mater Sci Eng C 96(2018):105–113. https://doi.org/10.1016/j.msec.2018.10.077

  285. Scoutaris N, Ross SA, Douroumis D (2018) 3D printed ‘Starmix’ drug loaded dosage forms for paediatric applications. Pharm Res 35(2):1–11. https://doi.org/10.1007/s11095-017-2284-2

    Article  Google Scholar 

  286. Chai X et al (2017) Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-03097-x

    Article  Google Scholar 

  287. Khoshnevis B (2004) Automated construction by contour crafting - Related robotics and information technologies. Autom Constr 13(1):5–19. https://doi.org/10.1016/j.autcon.2003.08.012

    Article  Google Scholar 

  288. Alexandrea P (2017) 3D Printed Architecture: Top 12 Most Stunning Buildings - 3Dnatives. https://www.3dnatives.com/en/3d-printed-architecture030520174/ (Accessed data 23 Nov 2020)

  289. 3D printed house: could it be a sustainable solution for future construction in Asia? Asia Green Buildings. http://www.asiagreenbuildings.com/8270/3d-printed-house-sustainable-solution-future-construction-asia/. Accessed 24 Nov 2020

  290. 3D printers for aerospace industry. Purple Platypus. https://purpleplatypus.com/resources/industries/aerospace/. Accessed 26 Nov 2020

  291. Podsiadły B, Skalski A, Słoma M (2020) Conductive ABS/Ni composite filaments for fused deposition modeling of structural electronics. Adv Intell Syst Comput 1044:62–70. https://doi.org/10.1007/978-3-030-29993-4_8

    Article  Google Scholar 

  292. Creating realistic imaging simulations with 3D printed phantoms. Stratasys. https://www.stratasys.com/explore/case-study/3d-printed-phantoms?returnUrl=%2Fexplore%3FPage%3D1%26Phrase%3D%26Industries%3D%257BA56B5FEB-FAFE-4ABD-B3F3-850E854DC96C%257D. Accessed 26 Nov 2020

  293. Hager I, Golonka A, Putanowicz R (2016) 3D printing of buildings and building components as the future of sustainable construction? Procedia Engineering 151:292–299. https://doi.org/10.1016/j.proeng.2016.07.357

    Article  Google Scholar 

  294. Stipek R (2016) FDM additive manufacturing and its impact on the automotive industry. Fisher Unitech. https://www.cati.com/blog/2016/08/fdm-additive-manufacturing-impact-automotive-industry/ (Accessed date 25 Jan 2021)

  295. Mohan N, Senthil P, Vinodh S, Jayanth N (2017) A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys Prototyp 12(1):47–59. https://doi.org/10.1080/17452759.2016.1274490

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Universiti Malaysia Pahang, Malaysia, for providing funds and facilities under research grants RDU190352, RDU192401 and RDU192217 to conduct this research.

Funding

This study is financially supported by the Universiti Malaysia Pahang, Grant RDU190352, RDU192401, and RDU192217.

Author information

Authors and Affiliations

Authors

Contributions

Kumaresan Rajan: Data curation, writing—original draft preparation. Mahendran Samykano: Supervision, conceptualization, writing—original draft preparation. Kumaran Kadirgama: Supervision, writing—reviewing and editing. Wan Sharuzi Wan Harun: Writing—reviewing and editing. Md. Mustafizur Rahman: Writing—reviewing and editing.

Corresponding author

Correspondence to Mahendran Samykano.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Consent to participate has been received from all co-authors before the work is submitted.

Consent for publication

Consent to publication has been received from all co-authors before the work is submitted.

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Various methods of the additive manufacturing process were discussed.

• Fused deposition modeling materials (polymers and polymer composites) were discussed in detail.

• Various parameters used and optimization of the fused deposition modeling process were discussed.

• Properties of different polymers and polymer composites have been extracted from different kinds of experiments and studies.

• Applications in the various sectors using the fused deposition process were discussed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, K., Samykano, M., Kadirgama, K. et al. Fused deposition modeling: process, materials, parameters, properties, and applications. Int J Adv Manuf Technol 120, 1531–1570 (2022). https://doi.org/10.1007/s00170-022-08860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08860-7

Keywords

Navigation