Skip to main content
Log in

Methods of influence coefficients to evaluate stress and deviation distribution of flexible assemblies—a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The most used approach to solve tolerance analysis problems for flexible assemblies is the method of influence coefficients that combines the finite element analysis with statistical analysis in order to establish a relationship between the assembly deviation and part deviation and to foresee the statistical distribution of stresses. The key of this relationship is the sensitivity matrices for the deviations and stresses that can be evaluated by different methods of influence coefficients. Therefore, the aim of this work is to make a review of these methods applying them to evaluate some flexible assemblies on the statistical distribution of deviations and stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Söderberg R, Lindkvist L, Wärmefjord K, Carlson JS (2016) Virtual geometry assurance process and toolbox. Procedia CIRP 43:3–12. https://doi.org/10.1016/j.procir.2016.02.043

    Article  Google Scholar 

  2. Cao Y, Liu T, Yang J (2018) A comprehensive review of tolerance analysis models. Int J Adv Manuf Technol 97:3055–3085. https://doi.org/10.1007/s00170-018-1920-2

    Article  Google Scholar 

  3. Liu SC, Hu SJ (1997) Variation simulation for deformable sheet metal assemblies using finite element methods. J Manuf Sci Eng 119:368–374. https://doi.org/10.1115/1.2831115

    Article  Google Scholar 

  4. Camelio J, Hu SJ, Ceglarek D (2004) Modeling variation propagation of multi-station assembly systems with compliant parts. J Mech Des 125:673–681. https://doi.org/10.1115/1.1631574

    Article  Google Scholar 

  5. Camelio JA, Hu SJ, Marin SP (2004) Compliant assembly variation analysis using component geometric covariance. J Manuf Sci Eng 126:355–360. https://doi.org/10.1115/1.1644553

    Article  Google Scholar 

  6. Dahlström S, Lindkvist L (2006) Variation simulation of sheet metal assemblies using the method of influence coefficients with contact modeling. J Manuf Sci Eng 129:615–622. https://doi.org/10.1115/1.2714570

    Article  Google Scholar 

  7. Ungemach G, Mantwill F (2008) Efficient consideration of contact in compliant assembly variation analysis. J Manuf Sci Eng 131:11005. https://doi.org/10.1115/1.3046133

    Article  Google Scholar 

  8. Lindau B, Lorin S, Lindkvist L, Söderberg R (2016) Efficient contact modeling in nonrigid variation simulation. J Comput Inf Sci Eng 16:011002. https://doi.org/10.1115/1.4032077

    Article  Google Scholar 

  9. Lorin S, Söderberg R, Carlson J, Edelvik F (2010) Simulating geometrical variation in injection molding. In: DS 61: Proceedings of NordDesign 2010, the 8th International NordDesign Conference, Göteborg, Sweden, 25.-27.08. 2010

  10. Lorin S, Lindkvist L, Söderberg R, Sandboge R (2013) Combining variation simulation with thermal expansion simulation for geometry assurance. J Comput Inf Sci Eng 13:031007. https://doi.org/10.1115/1.4024655

    Article  Google Scholar 

  11. Jareteg C, Wärmefjord K, Cromvik C et al (2016) Geometry assurance integrating process variation with simulation of spring-in for composite parts and assemblies. J Comput Inf Sci Eng 16:031003. https://doi.org/10.1115/1.4033726

    Article  Google Scholar 

  12. Lindau B, Wärmefjord K, Lindkvist L, Söderberg R (2014) Method for handling model growth in nonrigid variation simulation of sheet metal assemblies. J Comput Inf Sci Eng 14:031004. https://doi.org/10.1115/1.4027149

    Article  Google Scholar 

  13. Lorin S, Lindau B, Lindkvist L, Söderberg R (2017) Non-rigid variation simulation using the Sherman-Morrison-Woodbury formulas. In: Volume 2: Advanced manufacturing. American Society of Mechanical Engineers, p V002T02A111

  14. Corrado A, Polini W, Giuliano G (2019) Super-element method applied to MIC to reduce simulation time of compliant assemblies. Int J Comput Appl Technol 59:277. https://doi.org/10.1504/IJCAT.2019.10020649

    Article  Google Scholar 

  15. Sellem E, Rivière A (1998) Tolerance analysis of deformable assemblies. In: Proceedings of DETC98 ASME Design Engineering Technical Conference. Atlanta, pp 1–7

  16. Gerbino S, Patalano S, Franciosa P (2008) Statistical variation analysis of multi-station compliant assemblies based on sensitivity matrix. Int J Comput Appl Technol 33:12–23. https://doi.org/10.1504/IJCAT.2008.021881

    Article  Google Scholar 

  17. Söderberg R, Lindkvist L, Dahlström S (2006) Computer-aided robustness analysis for compliant assemblies. J Eng Des 17:411–428. https://doi.org/10.1080/09544820500275800

    Article  Google Scholar 

  18. Corrado A, Polini W (2019) A new way to solve tolerance analysis: the Cassino unified tolerance analysis tool. Int J Comput Integr Manuf 32:124–135. https://doi.org/10.1080/0951192X.2018.1550672

    Article  Google Scholar 

  19. Qu Z-Q (2004) Model order reduction techniques with applications in finite element analysis, 1st edn. Springer-Verlag London, London

    MATH  Google Scholar 

  20. Schrefler BA (1988) Finite elements and solution procedures for structural analysis. vol. I: Linear analysis. M. A. Crisfield, Pineridge Press, Swansea, 1986. No. of pages: 272. Int J Numer Methods Eng 26:289–289. https://doi.org/10.1002/nme.1620260122

  21. Lorin S, Lindkvist L, Söderberg R (2014) Variation simulation of stresses using the method of influence coefficients. J Comput Inf Sci Eng 14:011001. https://doi.org/10.1115/1.4025632

    Article  Google Scholar 

  22. Söderberg R, Wärmefjord K, Lindkvist L (2015) Variation simulation of stress during assembly of composite parts. CIRP Ann 64:17–20. https://doi.org/10.1016/j.cirp.2015.04.048

    Article  Google Scholar 

  23. Polini W, Corrado A (2019) Uncertainty in manufacturing of lightweight products in composite laminate: part 1—numerical approach. Int J Adv Manuf Technol 101:1423–1434. https://doi.org/10.1007/s00170-018-3024-4

    Article  Google Scholar 

  24. Polini W, Corrado A (2019) Uncertainty in manufacturing of lightweight products in composite laminate—part 2: experimental validation. Int J Adv Manuf Technol 101:1391–1401. https://doi.org/10.1007/s00170-018-3025-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilma Polini.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polini, W., Corrado, A. Methods of influence coefficients to evaluate stress and deviation distribution of flexible assemblies—a review. Int J Adv Manuf Technol 107, 2901–2915 (2020). https://doi.org/10.1007/s00170-020-05210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05210-3

Keywords

Navigation