Skip to main content
Log in

Direct metal laser sintering of TiN reinforced Ti6Al4V alloy based metal matrix composite: Fabrication and characterization

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the present research, direct metal laser sintering (DMLS) method was chosen to fabricate titanium nitride (TiN) reinforced Ti6Al4V alloy based metal matrix composites (MMCs) under an argon atmosphere using continuous wave (CW) fiber laser having a capacity of 400 W. Laser sintering process parameters, such as layer thickness (0.4 mm), laser beam spot diameter (0.4 mm), and hatching gap (0.2 mm) were kept constant throughout the experiments. Effects of input variable process parameters, such as laser power (50–65 W), scanning speed (3500–4500 mm/min), and volume % of TiN (5–15% v/v) on density, microhardness, and coefficient of friction of the fabricated MMCs were analyzed. The obtained results show the improvement in the physical properties of the fabricated MMCs and FESEM images evidently confirm the presence of TiN particulates and also revealed the uniform distribution of the TiN reinforcement in Ti6Al4V matrix. It was found that the microhardness measured by Vickers test was improved from 388 to 590 HV0.2 with an increase in the volume percentage of TiN. The results showed the coefficient of friction for fabricated samples were in the range of 0.33–0.42. The density (3.40–4.10 g/cm3) of the MMCs was found to increase with increasing the volume percentage of TiN reinforcement in the powder mixture. X-ray diffraction (XRD) analysis of the fabricated MMC confirmed the presence of different in-situ phases, such as Ti, TiN, TiO2, VN, AlV, Ti3Al2N2, and V6N2.7 as a consequence of a series of a chemical reaction between TiN and different elements of Ti6Al4V in the argon atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AlMangour B, Yang JM (2017) Understanding the deformation behavior of 17-4 precipitate hardenable stainless steel produced by direct metal laser sintering using micropillar compression and TEM. Int J Adv Manuf Technol 90(1–8):119–126. https://doi.org/10.1007/s00170-016-9367-9

    Article  Google Scholar 

  2. Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 46:1459–1468. https://doi.org/10.1016/j.ijmachtools.2005.09.005

    Article  Google Scholar 

  3. Kruth J-P, Levy G, Klocke F, Childs THC (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Technol 56:730–759. https://doi.org/10.1016/j.cirp.2007.10.004

    Article  Google Scholar 

  4. Salonitis K, D’Alvise L, Schoinochoritis B, Chantzis D (2016) Additive manufacturing and post-processing simulation: laser cladding followed by high speed machining. Int J Adv Manuf Technol 85:2401–2411. https://doi.org/10.1007/s00170-015-7989-y

    Article  Google Scholar 

  5. Lalas C, Tsirbas K, Salonitis K, Chryssolouris G (2007) An analytical model of the laser clad geometry. Int J Adv Manuf Technol 32:34–41. https://doi.org/10.1007/s00170-005-0318-0

    Article  Google Scholar 

  6. Samanta A, Chakraborty H, Bhattacharya M, Ghosh J, Sreemany M, Bysakh S, Rane R, Joseph A, Jhala G, Mukherjee S, Das M (2017) Nanotribological response of a plasma nitrided bio-steel. J Mech Behav Biomed Mater 65:584–599. https://doi.org/10.1016/j.jmbbm.2016.09.017

    Article  Google Scholar 

  7. Chen H-Y, Huang S-J (2004) Adaptive fuzzy sliding-mode control for the Ti6Al4V laser alloying process. Int J Adv Manuf Technol 24:667–674. https://doi.org/10.1007/s00170-003-1742-7

    Article  Google Scholar 

  8. Marzban J, Ghaseminejad P, Ahmadzadeh MH, Teimouri R (2015) Experimental investigation and statistical optimization of laser surface cladding parameters. Int J Adv Manuf Technol 76:1163–1172. https://doi.org/10.1007/s00170-014-6338-x

    Article  Google Scholar 

  9. Czelusniak T, Amorim FL, Higa CF, Lohrengel A (2014) Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering. Int J Adv Manuf Technol 72:1503–1512. https://doi.org/10.1007/s00170-014-5765-z

    Article  Google Scholar 

  10. Czelusniak T, Amorim FL, Lohrengel A, Higa CF (2014) Development and application of copper–nickel zirconium diboride as EDM electrodes manufactured by selective laser sintering. Int J Adv Manuf Technol 72:905–917. https://doi.org/10.1007/s00170-014-5728-4

    Article  Google Scholar 

  11. Hu RH, Lim JK (2010) Hardness and wear resistance improvement of surface composite layer on Ti–6Al–4V substrate fabricated by powder sintering. Mater Des (1980-2015) 31(5):2670–2675. https://doi.org/10.1016/j.matdes.2009.11.057

    Article  Google Scholar 

  12. Murthy HCA, Raju VB, Shivakumara C (2013) Effect of TiN particulate reinforcement on corrosive behaviour of aluminium 6061 composites in chloride medium. Bull Mater Sci 36:1057–1066. https://doi.org/10.1007/s12034-013-0560-2

    Article  Google Scholar 

  13. Saheb N, Mekid S (2015) Fiber-embedded metallic materials: from sensing towards nervous behavior. Materials 8(11):7938–7961. https://doi.org/10.3390/ma8115435

    Article  Google Scholar 

  14. Czelusniak T, Amorim FL (2016) Influence of metallic matrix on the densification behavior of zirconium diboride copper nickel composite processed by laser sintering. Int J Adv Manuf Technol 87:2353–2362. https://doi.org/10.1007/s00170-016-8624-2

    Article  Google Scholar 

  15. Long M, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19(18):1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4

    Article  Google Scholar 

  16. Paggi RA, Beal VE, Salmoria GV (2013) Process optimization for PA12/MWCNT nanocomposite manufacturing by selective laser sintering. Int J Adv Manuf Technol 66:1977–1985. https://doi.org/10.1007/s00170-012-4474-8

    Article  Google Scholar 

  17. Gurrappa I (2003) Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Mater Charact 51(2):131–139. https://doi.org/10.1016/j.matchar.2003.10.006

    Article  Google Scholar 

  18. Yan A, Wang Z, Yang T, Wang Y, Ma Z (2017) Sintering densification behaviors and microstructural evolvement of W-Cu-Ni composite fabricated by selective laser sintering. Int J Adv Manuf Technol 90:657–666. https://doi.org/10.1007/s00170-016-9326-5

    Article  Google Scholar 

  19. Shulunov VR (2016) Several advantages of the ultra high-precision additive manufacturing technology. Int J Adv Manuf Technol 85:1941–1945. https://doi.org/10.1007/s00170-015-7533-0

    Article  Google Scholar 

  20. Abidin AZ, Kozera R, Höhn M, Endler I, Knaut M, Boczkowska A, Czulak A, Malczyk P, Sobczak N, Michaelis A (2015) Preparation and characterization of CVD-TiN-coated carbon fibers for applications in metal matrix composites. Thin Solid Films 589:479–486. https://doi.org/10.1016/j.tsf.2015.06.022

    Article  Google Scholar 

  21. Hussain M, Mandal V, Kumar V, Das AK, Ghosh SK (2017) Development of TiN particulates reinforced SS316 based metal matrix composite by direct metal laser sintering technique and its characterization. Opt Laser Technol 97:46–59. https://doi.org/10.1016/j.optlastec.2017.06.006

    Article  Google Scholar 

  22. LI X, WANG C, Lu LU (2012) Microstructure and impact wear resistance of TiN reinforced high manganese steel matrix. J Iron Steel Res Int 19:60–65. https://doi.org/10.1016/S1006-706X(12)60114-9

    Google Scholar 

  23. Venkateswarlu K, Saurabh S, Rajinikanth V, Sahu RK, Ray AK (2010) Synthesis of TiN reinforced aluminium metal matrix composites through microwave sintering. J Mater Eng Perform 19:231–236. https://doi.org/10.1007/s11665-009-9458-y

    Article  Google Scholar 

  24. Tjong SC, Mai YW (2008) Processing-structure-property aspects of particulate-and whisker-reinforced titanium matrix composites. Compos Sci Technol 68(3):583–601. https://doi.org/10.1016/j.compscitech.2007.07.016

    Article  Google Scholar 

  25. Verdi D, Múnez CJ, Garrido MA, Poza P (2017) Process parameter selection for Inconel 625-Cr3C2 laser cladded coatings. Int J Adv Manuf Technol 92:1–10. https://doi.org/10.1007/s00170-017-0372-4

    Article  Google Scholar 

  26. Jamal M, Morgan MN (2017) Materials characterisation part II: tip geometry of the Vickers indenter for microindentation tests. Int J Adv Manuf Technol 92:1–12. https://doi.org/10.1007/s00170-017-0176-6

    Article  Google Scholar 

  27. Butt MZ, Javed A, Khaliq MW, Ali D, Bashir F (2017) Impact of 1064 nm–10 ns pulsed laser on the surface morphology, structure, and hardness of Pd80Ni20 alloy. Int J Adv Manuf Technol 90:1857–1869. https://doi.org/10.1007/s00170-016-9526-z

    Article  Google Scholar 

  28. Naseri R, Kadkhodayan M, Shariati M (2017) An experimental investigation of casing effect on mechanical properties of billet in ECAP process. Int J Adv Manuf Technol 90:3203–3216. https://doi.org/10.1007/s00170-016-9658-1

    Article  Google Scholar 

  29. Fahad M, Hopkinson N (2017) Evaluation and comparison of geometrical accuracy of parts produced by sintering-based additive manufacturing processes. Int J Adv Manuf Technol 88:3389–3394. https://doi.org/10.1007/s00170-016-9036-z

    Article  Google Scholar 

  30. Baeslack WA, McQuay PA, Lee DS, Fletcher ED (1993) Metallography of gamma titanium aluminides. Mater Charact 31(4):197–207. https://doi.org/10.1016/1044-5803(93)90063-2

    Article  Google Scholar 

  31. Latella BA, Gan BK, Davies KE, McKenzie DR, McCulloch DG (2006) Titanium nitride/vanadium nitride alloy coatings: mechanical properties and adhesion characteristics. Surf Coatings Technol 200(11):3605–3611. https://doi.org/10.1016/j.surfcoat.2004.09.008

    Article  Google Scholar 

  32. Shieh J, Hon MH (2001) Nanostructure and hardness of titanium aluminum nitride prepared by plasma enhanced chemical vapor deposition. Thin Solid Films 391(1):101–108. https://doi.org/10.1016/S0040-6090(01)00973-7

    Article  Google Scholar 

  33. Gu D, Shen Y (2007) Influence of reinforcement weight fraction on microstructure and properties of submicron WC–Co p/Cu bulk MMCs prepared by direct laser sintering. J alloys compds 431(1):112–120. https://doi.org/10.1016/j.jallcom.2006.05.044

    Article  Google Scholar 

  34. Kamath C, El-dasher B, Gallegos GF et al (2014) Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Technol 74:65–78. https://doi.org/10.1007/s00170-014-5954-9

    Article  Google Scholar 

  35. Hussain M, Mandal V, Singh PK, Kumar P, Kumar V, Das AK (2017) Experimental study of microstructure, mechanical and tribological properties of cBN particulates SS316 alloy based MMCs fabricated by DMLS technique. J Mech Sci Technol 31(6):2729–2737. https://doi.org/10.1007/s12206-017-0516-3

    Article  Google Scholar 

  36. Gu DD, Shen YF, Yang JL, Wang Y (2006) Effects of processing parameters on direct laser sintering of multicomponent Cu based metal powder. Mater Sci Technol 22:1449–1455. https://doi.org/10.1179/174328406X111057

    Article  Google Scholar 

  37. Hussain M, Kumar V, Mandal V, Singh PK, Kumar P, Das AK (2017) Development of cBN reinforced Ti6Al4V MMCs through laser sintering and process optimization. Mater Manuf Process 32:1–11. https://doi.org/10.1080/10426914.2017.1303152

    Article  Google Scholar 

  38. AlMangour B, Grzesiak D, Yang J-M (2016) Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: influence of starting TiC particle size and volume content. Mater Des 104:141–151. https://doi.org/10.1016/j.matdes.2016.05.018

    Article  Google Scholar 

  39. Almangour B, Grzesiak D, Yang JM (2016) Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting. J Alloys Compd 680:480–493. https://doi.org/10.1016/j.jallcom.2016.04.156

    Article  Google Scholar 

  40. Gu D, Meng G, Li C, Meiners W, Poprawe R (2012) Selective laser melting of TiC/Ti bulk nanocomposites: influence of nanoscale reinforcement. Scr Mater 67:185–188. https://doi.org/10.1016/j.scriptamat.2012.04.013

    Article  Google Scholar 

  41. Gu D, Hagedorn YC, Meiners W, Wissenbach K, Poprawe R (2011) Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by Selective Laser Melting (SLM): densification, growth mechanism and wear behavior. Compos Sci Technol 71:1612–1620. https://doi.org/10.1016/j.compscitech.2011.07.010

    Article  Google Scholar 

  42. AlMangour B, Grzesiak D, Yang JM (2017) Selective laser melting of TiB2/316L stainless steel composites: the roles of powder preparation and hot isostatic pressing post-treatment. Powder Technol 309:37–48. https://doi.org/10.1016/j.powtec.2016.12.073

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Hussain, M., Kumar, V. et al. Direct metal laser sintering of TiN reinforced Ti6Al4V alloy based metal matrix composite: Fabrication and characterization. Int J Adv Manuf Technol 97, 2635–2646 (2018). https://doi.org/10.1007/s00170-018-2159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2159-7

Keywords

Navigation