Skip to main content
Log in

A review of micro-mechanical cutting

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The need for using alternative processes rather than electro-discharge machining (EDM) for micro-parts has allowed micro-manufacturing (also known as precision engineering) to become an important option due to its speed, economy, capability and extended range of materials. One main group of micro-manufacturing processes is that of micro-mechanical cutting with the focus of this review being micro-mechanical cutting processes that generate chips, namely, micro-turning, micro-milling and micro-drilling. Developments and future prospects for these micro-machining processes have been reviewed including micro-cutting configurations, cutting tools, tool coatings, cutting fluids, chip formation, surface finish, burr formation, modelling and industrial applications. The main advantages and disadvantages of these micro-manufacturing processes have been highlighted together with their future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chern G-L, Wu Y-JE, Cheng J-C, Yao J-C (2007) Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Precis Eng 31:122–129

    Article  Google Scholar 

  2. Mian AJ, Driver N, Mativenga PT (2011) Chip formation in microscale milling and correlation with acoustic emission signal. Int J Adv Manuf Technol 56(1):63–78

    Article  Google Scholar 

  3. Waurzyniak P (2013) Micro manufacturing keeps shrinking the envelope. Manuf Eng 150:65–73

    Google Scholar 

  4. Godshall NA, Koehler DR, Liang AY, Smith BK Micro-machined resonator, U.S. Patent 5,198,716, filed December 9th 1991 and issued March 30th 1993 https://www.google.com.au/patents/US5198716. Accessed 8 August 2017

  5. Larson LE Micro-machined switch and method of fabrication, U.S. Patent 5,121,089, filed November 1st 1990 and issued June 9th 1992 https://www.google.com.au/patents/US5121089. Accessed 8 August 2017

  6. Kamisuki S, Nose Y, Shimizu N, Yotsuya S Micropump with valve structure, U.S. Patent 5,259,737, filed July 2nd 1991 and issued November 9th 1993 https://www.google.com.au/patents/US5259737. Accessed 8 August 2017

  7. Herndon TO, Raffel JI Interconnection system for high performance electronic hybrids, U.S. Patent 5,345,365, filed May 5th 1992 and issued September 6th 1994 https://www.google.com.au/patents/US5345365. Accessed 8 August 2017

  8. James CD, Katzenstein HS Micromachined relay and method of forming the relay, US Patent 5,479,042, filed February 1st 1993 and issued December 26th 1995 https://www.google.com.au/patents/US5479042. Accessed 8 August 2017

  9. Koehler DR, Sniegowski JJ, Bivens HM, Wessendorf KO Micro-machined resonator oscillator, US Patent 5,339,051, filed March 30th 1993 and issued August 16th 1994 https://www.google.com.au/patents/US5339051. Accessed 8 August 2017

  10. Suzuki H, Sugama A, Kojima N Oxygen electrode and temperature sensor, US Patent 5,431,806, filed November 17th 1993 and issued July 11th 1995 https://www.google.com.au/patents/US5431806. Accessed 8 August 2017

  11. Qin Y (2015) Chapter 1—overview of micro-manufacturing. In: Qin Y (ed) Micromanufacturing engineering and technology (Second Edition), ed New York: William Andrew Publishing, pp 1–33

  12. Uhlmann E, Piltz S, Doll U (2005) Machining of micro/miniature dies and moulds by electrical discharge machining—recent development. J Mater Process Technol 167:488–493

    Article  Google Scholar 

  13. García-López E, Medrano-Tellez A, Ibarra-Medina J, Siller Héctor R, Elías-Zúñiga A, Rodríguez Ciro A (2016) Fiber laser microcutting of AISI 316L stainless steel tubes—influence of pulse energy and spot overlap on back wall dross. Procedia CIRP 49:222–226

    Article  Google Scholar 

  14. Eberle G, Dold C, Wegener K (2015) Laser fabrication of diamond micro-cutting tool-related geometries using a high-numerical aperture micro-scanning system. Int J Adv Manuf Technol 81:1117–1125

    Article  Google Scholar 

  15. Demira AG, Previtalia B (2015) Microcutting of multi-layer foils with IR and green ns-pulsed fibre lasers for Li-ion batteries. Procedia CIRP 33:526–531

    Article  Google Scholar 

  16. Eberle G, Dold C, Wegener K (2015) Picosecond laser fabrication of micro cutting tool geometries on polycrystalline diamond composites using a high-numerical aperture micro scanning system. In: Klotzbach U, Washio K, Arnold CB (ed) Laser-based Micro- and Nanoprocessing IX - Proceedings of SPIE - The International Society for Optical Engineering, Bellingham, USA 9351:935103-1–935103-9 https://doi.org/10.1117/12.2075420

  17. Genna S, Leonea C, Palumbo B, Tagliaferri F (2015) Statistical approach to fiber laser microcutting of NIMONIC® C263 superalloy sheet used in effusion cooling system of aero engines. Procedia CIRP 33:520–525

    Article  Google Scholar 

  18. Zhang C, Guo P, Ehmann KF, Li Y (2016) Effects of ultrasonic vibrations in micro-groove turning. Ultrasonics 67:30–40

    Article  Google Scholar 

  19. Wang X, Hu J (2017) Nanowire cutting by an ultrasonically vibrating micro tool. Precis Eng 48:152–157

    Article  Google Scholar 

  20. Wang X, Hu J (2015) Ultrasonic cutting of individual silver nanowires by a linearly vibrating micro tool. In Proceedings of the 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device, Applications, Institute of Electrical and Electronics Engineers, New York, pp. 67–69 https://doi.org/10.1109/SPAWDA.2015.7364442

  21. Qin Y, Brockett A, Ma Y, Razali A, Zhao J, Harrison C, Pan W, Dai X, Loziak D (2010) Micro-manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 47:821–837

    Article  Google Scholar 

  22. Brinksmeier E, Preuss W (2012) Micro-machining. Philos Trans R Soc Lond A Math Phys Eng Sci 370:3973–3992

    Article  Google Scholar 

  23. Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46(3–4):313–332

    Article  Google Scholar 

  24. Johnstone RW, Parameswaran M (2004) An introduction to surface-micromachining. Springer Science & Business Media, New York https://doi.org/10.1007/978-1-4020-8021-0

  25. Liu X (2012) In situ metrology system for micro-milling machine. J Manuf Syst 31:15–21

    Article  Google Scholar 

  26. Piljek P, Keran Z, Math M (2014) Micromachining—review of literature from 1980 to 2010. Interdiscip Description Complex Syst 12:1–27

    Article  Google Scholar 

  27. Mishima N, Ashida K, Tanikawa T, Kaneko K, Maekawa H, Tanaka M (2000) Study on design evaluation of machine tools for the microfactory. Kikai Gijutsu Kenkyusho Shoho/J Mech Eng Lab 54(6):254–261

    Google Scholar 

  28. Rahman M, Senthil Kumar A, Prakash JRS (2001) Micro milling of pure copper. J Mater Process Technol 116(1):39–43

    Article  Google Scholar 

  29. Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55(2):745–768

    Article  Google Scholar 

  30. Camara MA, Campos JC, Abrao AM, Davim JP (2012) State of the art on micromilling of materials, a review. JMST 28(8):673–685

    Google Scholar 

  31. Document search results for “micro-milling”, “micro-drilling” and “micro-turning”, Scopus (www.scopus.com), Elsevier B.V., Amsterdam, The Netherlands (accessed March 17th 2017)

  32. Peale F (1836) Description of a machine for milling coin, invented and introduced into the mint of the United States. J Frankl Inst 22(6):375–377

    Article  Google Scholar 

  33. Cheng X, Wang Z, Nakamoto K, Yamazaki K (2010) Design and development of PCD micro straight edge end mills for micro/nano machining of hard and brittle materials. J Mech Sci Technol 24(11):2261–2268

    Article  Google Scholar 

  34. Chen P-C, Pan C-W, Lee W-C, Li K-M (2014) An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate. Int J Adv Manuf Technol 71(9–12):1623–1630

    Article  Google Scholar 

  35. Lu C, Gu A, Li M, Yang S (2012) The micro-milling machining of Pyrex glass using the electrochemical discharge machining process. Adv Mater Res 403-408:738–742

    Article  Google Scholar 

  36. Aramcharoen A, Mativenga PT, Yang S, Cooke KE, Teer DG (2008) Evaluation and selection of hard coatings for micro milling of hardened tool steel. Int J Mach Tools Manuf 48(14):1578–1584

    Article  Google Scholar 

  37. Uhlmann E, Oberschmidt D, Löwenstein A, Kuche Y (2016) Influence of cutting edge preparation on the performance of micro milling tools. Procedia CIRP 46:214–217

    Article  Google Scholar 

  38. De Cristofaro S, Funaro N, Feriti GC, Rostagno M, Comoglio M, Merlo A, Stefanini C, Dario P (2012) High-speed micro-milling: novel coatings for tool wear reduction. Int J Mach Tools Manuf 63:16–20

    Article  Google Scholar 

  39. Özel T, Thepsonthi T, Ulutan D, Kaftanoğlu B (2011) Experiments and finite element simulations on micro-milling of Ti–6Al–4V alloy with uncoated and cBN coated micro-tools. CIRP Ann Manuf Technol 60(1):85–88

    Article  Google Scholar 

  40. Uhlmann E, Oberschmidt D, Kuche Y, Löwenstein A, Winker I (2016) Effects of different cutting edge preparation methods on micro milling performance. Procedia CIRP 46:352–355

    Article  Google Scholar 

  41. Zhong L, Li L, Wu X, He N (2017) Micro cutting of pure tungsten using self-developed polycrystalline diamond slotting tools. Int J Adv Manuf Technol 89(5–8):2435–2445

    Article  Google Scholar 

  42. Hu H, Zhai Z, Li Y, Wang H, Dai J (2015) Researches on physical field evolution of micro-cutting of steel H13 by micron scale ceramic cutter based on finite element modeling. Int J Adv Manuf Technol 78:1407–1414

    Article  Google Scholar 

  43. Ueda K, Sugita T, Hiraga H, Iwata K (1991) A J-integral approach to material removal mechanisms in microcutting of ceramics. CIRP Ann Manuf Technol 40:61–64

    Article  Google Scholar 

  44. Jianxin D, Zhenxing D, Dongling Y, Hui Z, Xing A, Jun Z (2010) Fabrication and performance of Al2O3/(W, Ti)C + Al2O3/TiC multilayered ceramic cutting tools. Mater Sci Eng A 527:1039–1047

    Article  Google Scholar 

  45. Wang S-M, Lin J-J (2013) On-machine volumetric-error measurement and compensation methods for micro machine tools. Int J Precis Eng Manuf 14:989–994

    Article  Google Scholar 

  46. Imran M, Mativenga PT, Withers PJ (2012) Assessment of machining performance using the wear map approach in micro-drilling. Int J Adv Manuf Technol 59(1–4):119–126

    Article  Google Scholar 

  47. Tansel IN, Arkan TT, Bao WY, Mahendrakar N, Shisler B, Smith D, McCool M (2000) Tool wear estimation in micro-machining.: part I: tool usage–cutting force relationship. Int J Mach Tools Manuf 40:599–608

    Article  Google Scholar 

  48. Ghoshal B, Bhattacharyya B (2013) Influence of vibration on micro-tool fabrication by electrochemical machining. Int J Mach Tools Manuf 64:49–59

    Article  Google Scholar 

  49. Perveen A, San W, Rahman M (2012) Fabrication of different geometry cutting tools and their effect on the vertical micro-grinding of BK7 glass. Int J Adv Manuf Technol 61:101–115

    Article  Google Scholar 

  50. König W, Kutzner K, Schehl U (1992) Tool monitoring of small drills with acoustic emission. Int J Mach Tools Manuf 32:487–493

    Article  Google Scholar 

  51. Takata S, Ogawa M, Bertok P, Ootsuka J, Matushima K, Sata T (1985) Real-time monitoring system of tool breakage using Kalman filtering. Robot Comput Integr Manuf 2:33–40

    Article  Google Scholar 

  52. Hong X (1990) Wear behaviour and wear mechanism of ceramic tools in machining hardened alloy steel. Wear 139:439–451

    Article  Google Scholar 

  53. Tansel I, Rodriguez O, Trujillo M, Paz E, Li W (1998) Micro-end-milling—I. Wear and breakage. Int J Mach Tools Manuf 38:1419–1436

    Article  Google Scholar 

  54. Mathew R, Sundaram MM (2012) Modeling and fabrication of micro tools by pulsed electrochemical machining. J Mater Process Tech 212:1567–1572

    Article  Google Scholar 

  55. Ogawa K, Tanabe H, Nakagawa H (2015) A proposal of process strategy for micro-cutting edge fabrication: effects of shape formation after laser hardening. Key Eng Mater 625:545–549

    Article  Google Scholar 

  56. Davim JP (2015) In: Paulo Davim J (ed) Traditional machining processes: research advances, Berlin, Springer Berlin Heidelberg : Imprint: Springer

  57. Jayal AD, Balaji AK (2009) Effects of cutting fluid application on tool wear in machining: interactions with tool-coatings and tool surface features. Wear 267:1723–1730

    Article  Google Scholar 

  58. Senthil Kumar A, Raja Durai A, Sornakumar T (2006) Wear behaviour of alumina based ceramic cutting tools on machining steels. Tribol Int 39:191–197

    Article  Google Scholar 

  59. Zhu K, Hong GS, Wong YS, Wang W (2008) Cutting force denoising in micro-milling tool condition monitoring. Int J Prod Res 46:4391–4408

    Article  Google Scholar 

  60. Uhlmann E, Oberschmidt D, Kuche Y, Löwenstein A (2014) Cutting edge preparation of micro milling tools. Procedia CIRP 14:349–354

    Article  Google Scholar 

  61. Schaller T, Bohn L, Mayer J, Schubert K (1999) Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills. Precis Eng 23:229–235, 999

  62. Zhu K, Wong YS, Hong GS (2009) Multi-category micro-milling tool wear monitoring with continuous hidden Markov models. Mech Syst Signal Process 23:547–560

    Article  Google Scholar 

  63. Rahnama R, Sajjadi M, Park SS (2009) Chatter suppression in micro end milling with process damping. J Mater Process Technol 209:5766–5776

    Article  Google Scholar 

  64. Afazov SM, Ratchev SM, Segal J, Popov AA (2012) Chatter modelling in micro-milling by considering process nonlinearities. Int J Mach Tools Manuf 56:28–38

    Article  Google Scholar 

  65. Pham M-Q, Yoon H-S, Khare V, Ahn S-H (2014) Evaluation of ionic liquids as lubricants in micro milling—process capability and sustainability. J Clean Prod 76:167–173

    Article  Google Scholar 

  66. Cutting fluids. In Cutting Tool Technology ed: Springer London, 2008, pp 381–430

  67. Shashidhara YM, Jayaram SR (2010) Vegetable oils as a potential cutting fluid—an evolution. Tribol Int 43:1073–1081

    Article  Google Scholar 

  68. John J, Bhattacharya M, Raynor PC (2004) Emulsions containing vegetable oils for cutting fluid application. Colloids Surf A Physicochem Eng Asp 237:141–150

    Article  Google Scholar 

  69. Zhang Y, Jun MBG (2014) Feasibility of lignin as additive in metalworking fluids for micro-milling. J Manuf Process 16:503–510

    Article  Google Scholar 

  70. Burton G, Goo CS, Zhang Y, Jun MBG (2014) Use of vegetable oil in water emulsion achieved through ultrasonic atomization as cutting fluids in micro-milling. J Manuf Process 16:405–413 https://doi.org/10.1016/j.jmapro.2014.04.005

  71. Alberts M, Kalaitzidou K, Melkote S (2009) An investigation of graphite nanoplatelets as lubricant in grinding. Int J Mach Tools Manuf 49:966–970

    Article  Google Scholar 

  72. Oliaei SNB, Karpat Y (2016) Fabrication of PCD mechanical planarization tools by using μ-wire electrical discharge machining. Procedia CIRP 42:311–316

    Article  Google Scholar 

  73. Zhong L, Li L, Wu X, He N, Zhao G, Yao C (2017) Fabrication of PCD micro cutting tool and experimental investigation on machining of copper grating. Int J Adv Manuf Technol 88:2417–2427

    Article  Google Scholar 

  74. Hei H, Ma J, Li X, Yu S, Tang B, Shen Y, Tang W (2015) Preparation and performance of chemical vapor deposition diamond coatings synthesized onto the cemented carbide micro-end mills with a SiC interlayer. Surf Coat Technol 261:272–277

    Article  Google Scholar 

  75. Chen JY, Jin TY, Tian YJ (2016) Development of an ultrahard nanotwinned cBN micro tool for cutting hardened steel. SCIENCE CHINA Technol Sci 59(6):876–881

    Article  Google Scholar 

  76. Wu X, Li L, He N, Yao C, Zhao M (2016) Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting. Precis Eng 45:359–364

    Article  Google Scholar 

  77. Afazov SM, Zdebski D, Ratchev SM, Segal J, Liu S (2013) Effects of micro-milling conditions on the cutting forces and process stability. J Mater Process Technol 213:671–684

    Article  Google Scholar 

  78. Upadhyaya GS (1998) Cemented tungsten carbides: production, properties, and testing. Noyes Publications, New Jersey

    Google Scholar 

  79. Morrell J (2009) In: Morrell J, Jackson MJ (eds) Machining with nanomaterials. Springer US, Boston

    Google Scholar 

  80. Smith GT (2008) In: Smith GT (ed) Cutting tool technology : industrial handbook. Springer London, London

    Google Scholar 

  81. Palomar FE, Zambrano PC, Gómez MI, Colás R, Guerrero MP, Castillo A (2010) Coatings made of tungsten carbide and tantalum carbide for machining tools. Vacuum 84:1236–1239

    Article  Google Scholar 

  82. Qin F, Chou YK, Nolen D, Thompson RG (2009) Coating thickness effects on diamond coated cutting tools. Surf Coat Technol 204:1056–1060

    Article  Google Scholar 

  83. Marcos M Advances in materials processing technologies, 2006. Trans Tech Publishers, Zurich, p 2006

  84. Weinert K, Inasaki I, Sutherland JW, Wakabayashi T (2004) Dry machining and minimum quantity lubrication. CIRP Ann Manuf Technol 53:511–537

    Article  Google Scholar 

  85. Kim MW, Kim KH, Kang MC, Cho SH, Ryu KT (2012) Mechanical properties and cutting performance of Cr–Al–N hybrid coated micro-tool for micro high-speed machining of flexible fine die. Curr Appl Phys 12(Supplement 2):S14–S18

    Article  Google Scholar 

  86. Thepsonthi T, Özel T (2012) Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 63(9–12):903–914

    Article  Google Scholar 

  87. Özel T, Liu X (2009) Investigations on mechanics-based process planning of micro-end milling in machining mold cavities. Mater Manuf Process 24(12):1274–1281

    Article  Google Scholar 

  88. Koc M (2011) Micro-manufacturing: design and manufacturing of micro-products. Wiley, Hoboken

    Book  Google Scholar 

  89. Adair K, Kapoor SG, Devor RE (2011) Development of a unique topology for a hard-turning micro-scale machine tool. J Manuf Process 13:75–84

    Article  Google Scholar 

  90. Mandal S, Kumar A, Nagahanumaiah A (2012) Assessment of micro turning machine stiffness response and material characteristics by fuzzy rule based pattern matching of cutting force plots. J Manuf Syst

  91. Vinayagamoorthy R, Anthony Xavior M (2011) A review on micro turning process. Int J Curr Res 3(11):174–179

    Google Scholar 

  92. Lu Z, Yoneyama T (1999) Micro cutting in the micro lathe turning system. Int J Mach Tools Manuf 39:1171–1183

    Article  Google Scholar 

  93. Lauro CH, Ribeiro Filho SLM, Cardoso Brandão L, Paulo Davim J (2016) Analysis of behaviour biocompatible titanium alloy (Ti-6Al-7Nb) in the micro-cutting. Measurement 93:529–540

    Article  Google Scholar 

  94. Sivaraman V, Sankaran S, Vijayaraghavan L (2012) Machinability of multiphase microalloyed steel. Procedia CIRP 2:55–59

    Article  Google Scholar 

  95. Piotrowska I, Brandt C, Karimi H, Maass P (2009) Mathematical model of micro turning process. Int J Adv Manuf Technol 45:33–40

    Article  Google Scholar 

  96. Egashira K, Furukawa T, Yamaguchi K, Ota M (2016) Microcutting using a micro turn-milling machine. Precis Eng 44:81–86. https://doi.org/10.1016/j.precisioneng.2015.10.005

  97. Xie J, Li YH, Yang LF (2015) Study on 5-axial milling on microstructured freeform surface using the macro-ball cutter patterned with micro-cutting-edge array. CIRP Ann Manuf Technol 64:101–104

    Article  Google Scholar 

  98. Huo D, Cheng K, Wardle F (2010) Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 1: holistic design approach, design considerations and specifications. Int J Adv Manuf Technol 47:867–877

    Article  Google Scholar 

  99. Huo D, Cheng K, Wardle F (2010) Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: integrated dynamic modelling, design optimisation and analysis. Int J Adv Manuf Technol 47:879–890

    Article  Google Scholar 

  100. McKeown PA (1987) The role of precision engineering in manufacturing of the future. CIRP Ann Manuf Technol 36:495–501

    Article  Google Scholar 

  101. Holme NCR, Berg TW, Dinesen PG (2008) Diamond micro-milling for array mastering. In Optical engineering + applications. International Society for Optics and Photonics, pp 70620J–70620J-8

  102. Jahanmir S, Res Z, Heshmat H, Tomaszewski M (2010) Design and evaluation of an ultrahigh speed micro-machining spindle. Mach Sci Tech 14:224–243

    Article  Google Scholar 

  103. Nishikawa F, Yoshimoto S, Somaya K (2012) Ultrahigh-speed micro-milling end mill with shank directly supported by aerostatic bearings. J Adv Mech Des Syst Manuf 6:979–988

    Article  Google Scholar 

  104. Cheng K (2013) Microsystem and nanotechnology series (ME20): Micro-cutting: fundamentals and applications. John Wiley & Sons, Somerset

    Book  Google Scholar 

  105. Bissacco G, Hansen HN, De Chiffre L (2005) Micromilling of hardened tool steel for mould making applications. J Mater Process Technol 167:201–207

    Article  Google Scholar 

  106. Malekian M, Mostofa MG, Park SS, Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Technol 212(3):553–559

    Article  Google Scholar 

  107. Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part I: analytical cutting force model. Int J Mach Tools Manuf 40(15):2155–2173

    Article  Google Scholar 

  108. Malekian M, Park SS, Jun MB (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49(7):586–598

    Article  Google Scholar 

  109. Li C, Lai X, Li H, Ni J (2007) Modeling of three-dimensional cutting forces in micro-end-milling. J Micromech Microeng 17(4):671

    Article  Google Scholar 

  110. Masuzawa T (2000) State of the art of micromachining. CIRP Ann Manuf Technol 49:473–488

    Article  Google Scholar 

  111. Fortgang J, Singhose W, Juanes Márquez J, Perez J (2011) International Journal of Control, Automation, and Systems ICROS, KIEE and Springer

  112. Bang Y-B, Lee K-M, Oh S (2005) 5-axis micro milling machine for machining micro parts. Int J Adv Manuf Technol 25:888–894

    Article  Google Scholar 

  113. Sun X, Cheng K (2015) Chapter 2—micro-/nano-machining through mechanical cutting A2—Qin, Yi. In Micromanufacturing engineering and technology (Second Edition), ed Boston: William Andrew Publishing, pp. 35–59

  114. Cheng K (2013) Micro-cutting: fundamentals and applications. Wiley, Hoboken

    Book  Google Scholar 

  115. Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann Manuf Technol 52:635–657

    Article  Google Scholar 

  116. Gao S, Pang S, Jiao L, Yan P, Luo Z, Yi J, Wang X (2017) Research on specific cutting energy and parameter optimization in micro-milling of heat-resistant stainless steel. Int J Adv Manuf Technol 89:191–205

    Article  Google Scholar 

  117. Aramcharoen A, Mativenga PT (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33:402–407

    Article  Google Scholar 

  118. Vasile MJ, Friedrich CR, Kikkeri B, McElhannon R (1996) Micrometer-scale machining: tool fabrication and initial results. Precis Eng 19:180–186 https://doi.org/10.1016/S0141-6359(96)00024-4

  119. Fleischer J, Deuchert M, Ruhs C, Kühlewein C, Halvadjiysky G, Schmidt C (2008) Design and manufacturing of micro milling tools. Microsyst Technol 14:1771–1775

    Article  Google Scholar 

  120. Suzuki H, Okada M, Fujii K, Matsui S, Yamagata Y (2013) Development of micro milling tool made of single crystalline diamond for ceramic cutting. CIRP Ann Manuf Technol 62:59–62

    Article  Google Scholar 

  121. Friedrich CR, Coane PJ, Vasile MJ (1997) Micromilling development and applications for microfabrication. Microelectron Eng 35:367–372

    Article  Google Scholar 

  122. Mamedov A, Layegh SE, Lazoglu I (2015) Instantaneous tool deflection model for micro milling. Int J Adv Manuf Technol 79:769–777

    Article  Google Scholar 

  123. Dow TA, Miller EL, Garrard K (2004) Tool force and deflection compensation for small milling tools. Precis Eng 28

  124. Zhang X, Ehmann KF, Yu T, Wang W (2016) Cutting forces in micro-end-milling processes. Int J Mach Tool Manu 107:21–40

    Article  Google Scholar 

  125. Fortgang J, Singhose W, de Juanes Márquez J, Perez J (2011) Command shaping control for micro-milling operations. Int J Control Autom Syst 9:1136–1145

    Article  Google Scholar 

  126. Yuan ZJ, Zhou M, Dong S (1996) Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62

  127. Yang Z, Tan Q, Wang L (2002) Principle of precision micro-drilling with axial vibration of low frequency. Int J Prod Res 40:1421–1427

    Article  MATH  Google Scholar 

  128. Egashira K, Hosono S, Takemoto S, Masao Y (2011) Fabrication and cutting performance of cemented tungsten carbide micro-cutting tools. Precis Eng 35:547–553

    Article  Google Scholar 

  129. Ahn SH, Ryu SH, Choi DK, Chu CN (2004) Electro-chemical micro drilling using ultra short pulses. Precis Eng 28:129–134

    Article  Google Scholar 

  130. Mithu MAH, Fantoni G, Ciampi J (2011) The effect of high frequency and duty cycle in electrochemical microdrilling. Int J Adv Manuf Technol 55:921–933

    Article  Google Scholar 

  131. Ho SF, Ngoi BKA (2004) Sub-microdrilling with ultrafast pulse laser interference. Appl Phys B Lasers Opt 79:99–102 https://doi.org/10.1007/s00340-004-1517-3

  132. Knowles MRH, Rutterford G, Karnakis D, Ferguson A (2007) Micro-machining of metals, ceramics and polymers using nanosecond lasers. Int J Adv Manuf Technol 33:95–102

    Article  Google Scholar 

  133. Klocke F, Gerschwiler K, Abouridouane M (2009) Size effects of micro drilling in steel. Prod Eng 3:69–72

    Article  Google Scholar 

  134. Lee DG, Lee HG, Kim PJ, Bang KG (2003) Micro-drilling of alumina green bodies with diamond grit abrasive micro-drills. Int J Mach Tools Manuf 43:551–558 https://doi.org/10.1016/S0890-6955(03)00021-X

  135. Altintas Y, Jin X (2011) Mechanics of micro-milling with round edge tools. CIRP Ann Manuf Technol 60:77–80

    Article  Google Scholar 

  136. Zhou L, Peng FY, Yana R, Yao PF, Yang CC, Li B (2015) Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. Int J Mach Tool Manu 97:29–41

    Article  Google Scholar 

  137. Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part II: tool run-out. Int J Mach Tools Manuf 40:2175–2192

    Article  Google Scholar 

  138. Jun MBG, Goo C, Malekian M, Park S (2012) A new mechanistic approach for micro end milling force modeling. J Manuf Sci Eng 134:0110061–0110069

    Article  Google Scholar 

  139. Rao S, Shunmugam MS (2012) Analytical modeling of micro end-milling forces with edge radius and material strengthening effects. Mach Sci Technol 16:205–227

    Article  Google Scholar 

  140. Afazov SM, Ratchev SM, Segal J (2010) Modelling and simulation of micro-milling cutting forces. J Mater Process Technol 210:2154–2162

    Article  Google Scholar 

  141. Lekkala R, Bajpai V, Singh RK, Joshi SS (2011) Characterization and modeling of burr formation in micro-end milling. Precis Eng 35(4):625–637

    Article  Google Scholar 

  142. Vogler MP, Kapoor SG, DeVor RE (2005) On the modeling and analysis of machining performance in micro-endmilling, part II: cutting force prediction. J Manuf Sci Eng 126:695–705

    Article  Google Scholar 

  143. Cuba Ramos A, Autenrieth H, Strauß T, Deuchert M, Hoffmeister J, Schulze V (2012) Characterization of the transition from ploughing to cutting in micro machining and evaluation of the minimum thickness of cut. J Mater Process Technol 212:594–600

    Article  Google Scholar 

  144. Yoon HS, Ehmann KF (2016) Dynamics and stability of micro-cutting operations. Int J Mech Sci 115-116:81–92

    Article  Google Scholar 

  145. Uysal A, Altan E (2015) Effect of ploughing force on cutting forces in micro-cutting with a rounded-edge cutting tool. Mater Today: Proc 2:224–229

    Article  Google Scholar 

  146. Filiz S, Conley CM, Wasserman MB, Ozdoganlar OB (2007) An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills. Int J Mach Tools Manuf 47:1088–1100

    Article  Google Scholar 

  147. Lucca DA, Seo YW, Komanduri R (1993) Effect of tool edge geometry on energy dissipation in ultraprecision machining. CIRP Ann Manuf Technol 42:83–86

    Article  Google Scholar 

  148. Mian AJ, Driver N, Mativenga PT (2011) Estimation of minimum chip thickness in micro-milling using acoustic emission. Proc Inst Mech Eng B J Eng Manuf 225(9):1535–1551

    Article  Google Scholar 

  149. Wang W, Kweon SH, Yang SH (2005) A study on roughness of the micro-end-milled surface produced by a miniatured machine tool. J Mater Process Technol 162–163:702–708

    Article  Google Scholar 

  150. Vogler MP, DeVor RE, Kapoor SG (2005) On the modeling and analysis of machining performance in micro-endmilling, part I: surface generation. J Manuf Sci Eng 126:685–694

    Article  Google Scholar 

  151. Lee K, Dornfeld DA (2004) A study of surface roughness in the micro-end-milling process. Laboratory for Manufacturing and Sustainability

  152. Bissacco G, Hansen HN, De Chiffre L (2006) Size effects on surface generation in micro milling of hardened tool steel. CIRP Ann Manuf Technol 55:593–596

    Article  Google Scholar 

  153. Komatsu T, Musha Y, Yoshino T, Matsumura T (2015) Surface finish and affected layer in milling of fine crystal grained stainless steel. J Manuf Process 19:148–154

    Article  Google Scholar 

  154. Kumar MS, Kannan TTM, Giridharan S, Kumar PV (2014) Optimization of micro milling parameters of Al-6082 by anova methodology. Int J Mech Eng Robot Res 3:377–382

    Google Scholar 

  155. Kiswanto G, Zariatin DL, Ko TJ (2014) The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation. J Manuf Process 16:435–450

    Article  Google Scholar 

  156. Wu X, Li L, He N (2017) Investigation on the burr formation mechanism in micro cutting. Precis Eng 47:191–196

    Article  Google Scholar 

  157. Lee K, Dornfeld DA (2005) Micro-burr formation and minimization through process control. Precis Eng 29(2):246–252

    Article  Google Scholar 

  158. Saptaji K, Subbiah S, Dhupia JS (2012) Effect of side edge angle and effective rake angle on top burrs in micro-milling. Precis Eng 36:444–450

    Article  Google Scholar 

  159. Gillespie LK (1979) Deburring precision miniature parts. Precis Eng 1:189–198

    Article  Google Scholar 

  160. Jeong YH, HanYoo B, Lee HU, Min B-K, Cho D-W, Lee SJ (2009) Deburring microfeatures using micro-EDM. J Mater Process Technol 209:5399–5406. https://doi.org/10.1016/j.jmatprotec.2009.04.021

  161. Li HS Method of manufacturing a precision micro-filter, US Patent US5256360A, October 26th 1993

  162. Takács M, Verö B, Mészáros I (2003) Micromilling of metallic materials. J Mater Process Technol 138:152–155

    Article  Google Scholar 

  163. Suzuki H, Moriwaki T, Yamamoto Y, Goto Y (2007) Precision cutting of aspherical ceramic molds with micro PCD milling tool. CIRP Ann Manuf Technol 56:131–134

    Article  Google Scholar 

  164. Wang C, Gong YD, Yin GQ, Wen XL, Cheng J (2013) Study on micro mill-grinding technology. Appl Mech Mater 390:586–592

    Article  Google Scholar 

  165. van der Zel JM Dental prosthesis and method for manufacturing a dental prosthesis, US Patent US5378154A, January 3rd 1995

  166. Noiles DG Metallic prosthetic devices having micro-textured outer surfaces, US Patent US4865603, September 12th 1989

  167. Schneider F, Bischof R, Kirsch B, Kuhn C, Müller R, Aurich JC (2016) Investigation of chip formation and surface integrity when micro-cutting cp-titanium with ultra-fine grain cemented carbide. Procedia CIRP 45:115–118

    Article  Google Scholar 

  168. Herrera-Granados G, Morita N, Hidai H, Matsusaka S, Chiba A, Ashida K, Ogura I, Okazaki Y (2016) Development of a non-rigid micro-scale cutting mechanism applying a normal cutting force control system. Precis Eng 43:544–553

    Article  Google Scholar 

  169. Kurniawan R, Kiswanto G, Ko TJ (2016) Micro-dimple pattern process and orthogonal cutting force analysis of elliptical vibration texturing. Int J Mach Tool Manu 106:127–140

    Article  Google Scholar 

  170. Kim JH, Lee S-K (2016) Micro-patterning technique using a rotating cutting tool controlled by an electromagnetic actuator. Int J Mach Tool Manu 101:52–64

    Article  Google Scholar 

  171. Zhang J, Cui T, Ge C, Sui Y, Yang H (2016) Review of micro/nano machining by utilizing elliptical vibration cutting. Int J Mach Tool Manu 106:109–126

    Article  Google Scholar 

  172. Herrera-Granados G, Morita N, Hidai H, Matsusaka S, Chiba A, Ashida K, Ogura I, Okazaki Y (2015) Experimental stress analysis of glass cutting using a non-rigid cutting mechanism. Manuf Lett 6:14–18

    Article  Google Scholar 

  173. Zhang L, Xie J, Guo RB, Wu KK, Li P, Zheng JH (2016) Precision and mirror micro-grinding of micro-lens array on macro-freeform glass substrate for micro-photovoltaic performances. Int J Adv Manuf Technol 86:87–96

    Article  Google Scholar 

  174. Azami S, Kudo H, Mizumoto Y, Tanabe T, Yan J, Kakinuma Y (2015) Experimental study of crystal anisotropy based on ultra-precision cylindrical turning of single-crystal calcium fluoride. Precis Eng 40:172–181

    Article  Google Scholar 

  175. Friedrich C, Coane P, Goettert J, Gopinathin N (1998) Direct fabrication of deep x-ray lithography masks by micromechanical milling. Precis Eng 22:164–173

    Article  Google Scholar 

  176. Jaffery SHI, Khan M, Ali L, Mativenga PT (2016) Statistical analysis of process parameters in micromachining of Ti-6Al-4V alloy. Proc Inst Mech Eng B J Eng Manuf 230:1017–1034. https://doi.org/10.1177/0954405414564409

  177. Jaffery SI, Driver N, Mativenga PT (2010) Analysis of process parameters in the micromachining of Ti-6Al-4V alloy. In: Hinduja S, Li L (ed) Proceedings of the 36th International MATADOR Conference, Springer, London, pp. 239–242

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boswell, B., Islam, M.N. & Davies, I.J. A review of micro-mechanical cutting. Int J Adv Manuf Technol 94, 789–806 (2018). https://doi.org/10.1007/s00170-017-0912-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0912-y

Keywords

Navigation