Skip to main content
Log in

Minimum quantity lubrication advantages when applied to insert flank face in milling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study compares tool life and surface roughness in milling of X100CrMoV5 mold steel for different lubrication conditions: dry machining, minimum quantity lubrication (MQL) through inner channels oriented to insert rake face, and MQL through inner channels oriented to insert flank face. It was proven that the tool life using MQL to flank face is increased by about 28.5% compared to dry cutting and about 11% compared with MQL to rake face. The improvement was proved to be a consequence of better lubrication on tool/chip and tool/workpiece interfaces. In fact, applying MQL to flank face generated longer and thinner chips compared to MQL applied to rake face and dry machining due to a lower friction effect. Additionally, SEM analysis revealed that MQL to insert flank face reduced the amount of adhesion materials compared to MQL on rake face and dry machining. Thus, this work shows that MQL applied through inner channels to insert flank face in milling can provide significant improvements in the cutting tool wear rate and/or productivity of cutting tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang S, Li JF, Wang YW (2012) Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. J Clean Prod 32:81–87

    Article  Google Scholar 

  2. Duchosal A, Leroy R, Vecellio L, Louste C, Ranganathan N (2013) An experimental investigation on oil mist characterization used in MQL milling process. Int J Adv Manuf Technol 66(5–8):1003–1014

    Article  Google Scholar 

  3. Zhang Y, Li C, Jia D, Li B, Wang Y, Yang M et al (2016) Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J Mater Process Technol 232:100–115

    Article  Google Scholar 

  4. Sharma AK, Singh RK, Dixit AR, Tiwari AK (2016) Characterization and experimental investigation of Al2O3 nanoparticle based cutting fluid in turning of AISI 1040 steel under minimum quantity lubrication (MQL). Mater Today Proc 3(6):1899–1906

    Article  Google Scholar 

  5. Kurgin SM, Dasch JL, Simon DC, Barber G, Zou Q (2014) A comparison of two minimum quantity lubrication delivery systems. Ind Lubr Tribol 4;66(1):151–9

  6. Kamata Y, Obikawa T (2007) High speed MQL finish-turning of Inconel 718 with different coated tools. J Mater Process Technol 192–193:281–286

    Article  Google Scholar 

  7. Park K-H, Olortegui-Yume J, Yoon M-C, Kwon P (2010) A study on droplets and their distribution for minimum quantity lubrication (MQL). Int J Mach Tools Manuf 50(9):824–833

    Article  Google Scholar 

  8. Iskandar Y, Tendolkar A, Attia MH, Hendrick P, Damir A, Diakodimitris C (2014) Flow visualization and characterization for optimized MQL machining of composites. CIRP Ann - Manuf Technol 63(1):77–80

    Article  Google Scholar 

  9. Saberi A, Rahimi AR, Parsa H, Ashrafijou M, Rabiei F (2016) Improvement of surface grinding process performance of CK45 soft steel by minimum quantity lubrication (MQL) technique using compressed cold air jet from vortex tube. J Clean Prod 131:728–738

    Article  Google Scholar 

  10. Maruda RW, Legutko S, Krolczyk GM, Hloch S, Michalski M (2015) An influence of active additives on the formation of selected indicators of the condition of the X10CrNi18-8 stainless steel surface layer in MQCL conditions. Int J Surf Sci Eng 9(5):452–465

    Article  Google Scholar 

  11. Maruda RW, Krolczyk GM, Feldshtein E, Nieslony P, Tyliszczak B, Pusavec F (2017) Tool wear characterizations in finish turning of AISI 1045 carbon steel for MQCL conditions. Wear 372–373:54–67

    Article  Google Scholar 

  12. Maruda RW, Krolczyk GM, Nieslony P, Wojciechowski S, Michalski M, Legutko S (2016) The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J Manuf Process 24:107–115

    Article  Google Scholar 

  13. Duchosal A, Werda S, Serra R, Leroy R, Hamdi H (2015) Numerical modeling and experimental measurement of MQL impingement over an insert in a milling tool with inner channels. Int J Mach Tools Manuf 94:37–47

    Article  Google Scholar 

  14. López de Lacalle LN, Angulo C, Lamikiz A, Sánchez JA (2006) Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling. J Mater Process Technol 172(1):11–15

    Article  Google Scholar 

  15. Chiffre LD (1977) Mechanics of metal cutting and cutting fluid action. Pergamon Press 17(3):225–234

    Google Scholar 

  16. Hong H, Riga AT, Vinci JN (1993) Evaluation of overbased sulfonates as extreme-pressure additives in metalworking fluids. Lubr Eng 49(1):19–24

    Google Scholar 

  17. Childs T, Maekawa K, Obikawa T, Uamane Y (2000) In: Flynn M, Rabson J (eds) Metal machining theory and applications. Arnold, London, p 416

  18. Astakhov VP (2006) Tribology of metal cutting, 1st edn. Elseiver, London, p 417

  19. Bailey JA (1975) Friction in metal machining—mechanical aspects. Wear 31:243–275

    Article  Google Scholar 

  20. Claudin C, Mondelin A, Rech J, Fromentin G (2010) Effects of a straight oil on friction at the tool–workmaterial interface in machining. Int J Mach Tools Manuf 50(8):681–688

    Article  Google Scholar 

  21. Hadad M, Sadeghi B (2013) Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. J Clean Prod 54:332–343

    Article  Google Scholar 

  22. Tasdelen B, Thordenberg H, Olofsson D (2008) An experimental investigation on contact length during minimum quantity lubrication (MQL) machining. J Mater Process Technol 203(1–3):221–231

    Article  Google Scholar 

  23. Attanasio A, Gelfi M, Giardini C, Remino C (2006) Minimal quantity lubrication in turning: effect on tool wear. Wear 260(3):333–338

    Article  Google Scholar 

  24. Obikawa T, Kamata Y, Asano Y, Nakayama K, Otieno AW (2008) Micro-liter lubrication machining of Inconel 718. Int J Mach Tools Manuf 48(15):1605–1612

    Article  Google Scholar 

  25. Werda S, Duchosal A, Le Quilliec G, Morandeau A, Leroy R (2016) Minimum quantity lubrication: influence of the oil nature on surface integrity. Procedia CIRP 45:287–290

    Article  Google Scholar 

  26. Yeo S, Ong S (2000) Assessment of the thermal effects on chip surfaces. J Mater Process Technol 98(3):317–321

    Article  Google Scholar 

  27. Rech J, Parot RJ (2006) A multiview approach to the tribological characterisation of cutting tool coatings for steels in high-speed dry turning 1(1)

  28. Dautzenberg JH, Zaat JH (1973) Quantitative determination of deformation by sliding wear. Wear 23(1):9–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Werda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werda, S., Duchosal, A., Le Quilliec, G. et al. Minimum quantity lubrication advantages when applied to insert flank face in milling. Int J Adv Manuf Technol 92, 2391–2399 (2017). https://doi.org/10.1007/s00170-017-0317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0317-y

Keywords

Navigation