Skip to main content
Log in

Review on magnetically controlled arc welding process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

External magnetic field (EMF) has a strong effect on the welding arc shape, droplet transfer, weld forming, microstructure, and properties of joint metal. This paper defines the types of external magnetic field and reviews the development of magnetically controlled arc welding process, particularly, the effect of external magnetic field parameters on the welding process. It is found that the welding productivity, the weld formation, the ductility, and toughness of welded metal can be improved; and the welding residual stresses, the chemical inhomogeneity, and the welding defects can be reduced. Finally, the development trend is discussed in the later sections of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo J, Luo Q, Wang X, Wang X (2010) EMS-CO2 welding: a new approach to improve droplet transfer characteristics and welding formation. J Materials and Manufacturing Pocesses 25(11):1233–1241

    Article  Google Scholar 

  2. Reis RP, Scotti A, Norrish J, Cuiuri D (2013) Investigation on welding arc interruptions in the presence of magnetic fields: arc length, torch angle and current pulsing frequency influence. IEEE Transactions on Plasma Science 41(1):133–139

    Article  Google Scholar 

  3. Xun Z, Zeyang Z, Wang C, Fei Y, Hu X (2016) The effect of external longitudinal magnetic field on laser-MIG hybrid welding. Int J Adv Manuf Technol 85(5–8):1735–1743

    Google Scholar 

  4. Zhu S, Wang Q, Fengliang Y, Liang Y, Wang X (2011) Research on droplet transfer of MIG welding with alternating longitudinal magnetic field. Adv Mater Res 189-193:993–996

    Article  Google Scholar 

  5. Yunlong C, Mingxu L, Lu L, Babkin AS, Lee B-Y (2015) Influence of longitudinal magnetic field on the CO2 arc shape. Plasma Science & Technology 17(4):321–326

    Article  Google Scholar 

  6. Guenter A, Peter B, Helmut H, Lindenau D (2003) Improvement of laser beam welding by electromagnetic forces in the weld pool. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 4831:175–179

    Google Scholar 

  7. Min D, Wang Y (2016) Microstructure and properties evaluations of spot-welded ferritic steel sheets via static magnetic field. Met Mater Int 22(1):94–100

    Article  Google Scholar 

  8. Hartz-Behrend K, Marqués JL, Forster G, Jenicek A, Müller M, Cramer H, Jilg A, Soyer H, Schein J (2014) Stud arc welding in a magnetic field–investigation of the influences on the arc motion. J Phys Conf Ser 550:012003

    Article  Google Scholar 

  9. Yunlong C, Lu L, Xiaolong L, Lee B-Y (2013) Numerical simulation of SAW heat source in the external longitudinal magnetic field in 16Mn steel. Mater Sci Forum 762:584–589

    Article  Google Scholar 

  10. Kimihiro Y, Hiroshi N, Hirohisa T, Miyuki H, Koichi O (2016) Effect of magnetic flux density on Sn crystallographic orientation in a solder joint system. Journal of Materials Science-Materials in Electronics 27(4):3710–3714

    Article  Google Scholar 

  11. Vendan S, Arungalai MS, Buvanashekaran G (2011) Magnetically impelled arc butt welding of alloy steel tubes in boilers–stablishment of parameter window. Mechatronics 21(1):30–37

    Article  Google Scholar 

  12. Thomy C, Vollertsen F (2005) Influence of magnetic fields on dilution during laser welding of aluminium. Adv Mater Res 6-8:179–186

    Article  Google Scholar 

  13. Häßler M., Rose S., Füssel U., Schnick M.. TIG welding torch with magnetic arc oscillation and optimized shielding gas flow. 65th Annual Assembly and International Conference of the International Institute of Welding Commission XII–Arc Welding Processes and Production Systems, 2012, Doc. XII-2052-12

  14. Haidong C, Ma T, Yong Z, Xiaoyu Z (2012) Microstructural analysis of mild steel joint by flash butt welding with external magnetic field. (in Chinese) Transactions of the China Welding Institution 33(2):109–112

    Google Scholar 

  15. Panda BN, Arungalai Vendan S, Garg A (2016) Experimental- and numerical-based studies for magnetically impelled arc butt welding of T11 chromium alloy tubes. Int J Adv Manuf Technol 8:1–8

    Google Scholar 

  16. Guoji Z, Luo Q, Wang X, Luo J (2010) Numerical simulation and experimental research on MAG surfacing deposited with electro-magnetic stirring controlling. Adv Mater Res 102-104:407–411

    Article  Google Scholar 

  17. Zhu S, Wang QW, Yin FL, Liang YY, Chen L (2012) Influence of alternative magnetic field frequency on microstructure and properties of surfacing welding layer of aluminum alloy. Mater Sci Forum 697-698:351–355

    Article  Google Scholar 

  18. Wang C, Haiou Z, Wang G (2011) Simulation and experimental study of preparation of functionally gradient materials by MIG welding under magnetic field. Acta Metallurgice Sinica 47(9):1221–1226

    Google Scholar 

  19. Wang H, Changjun L (2013) Research on the microstructure and performance of Co-based alloy surfacing layer. Adv Mater Res 652-654:1886–1891

    Article  Google Scholar 

  20. Wang J, Qingjie S, Jicai F, Wang S, Huanyao Z (2016) Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation. Int J Adv Manuf Technol 86(1–4):1–8

    Google Scholar 

  21. Racineux G, Manogaran AP, Pereira D, Miranda RM (2014) Dissimilar welding using spot magnetic pulse welding. Proceedings of the Eighth International Conference on Management Science and Engineering Management 45:525–531

    Google Scholar 

  22. Liu YB, Sun QJ, Wang H, Zhang HM, Cai SJ, Feng JC (2016) Effect of the axial external magnetic field on opper/aluminium arc weld joining. Sci Technol Weld Join 21(6):460–465

    Article  Google Scholar 

  23. Bai XW, Zhang HO, Wang GL (2013) Electromagnetically confined weld-based additive manufacturing. Procedia CIRP 6:515–520

    Article  Google Scholar 

  24. Yibo L, Qingjie S, Jinping L, Wang S, Jicai F (2015) Effect of axial external magnetic field on cold metal transfer welds of aluminum alloy and stainless steel. Mater Lett 152:29–31

    Article  Google Scholar 

  25. Arungalai VS, Reddy MS, Buvanashekaran G (2012) Feasibility of magnetically impelled arc butt (MIAB) welding of high-thickness tubes for pressure parts. Mater Manuf Process 27(5):573–579

    Article  Google Scholar 

  26. Iordachescu D, Iordachescu M, Georgescu B, Miranda RM, Ruiz-Hervias OJL (2010) Technological windows for MIAB welding of tubes featuring original longitudinal magnetization system with peripheral solenoids. J Mater Process Technol 210(6–7):951–960

    Article  Google Scholar 

  27. Yoshihiro Y, Yusuke K, Takeru I, Yoshihiko U, Yasunori T, Tatsuo I (2015) Experimental investigation of magnetic arc blow in plasma arc cutting. Welding in the World 59(1):45–51

    Article  Google Scholar 

  28. Shuyuan J, Xiaowei W, Huanming C, Chenpin L (2012) The impact of adscititious longitudinal magnetic field on CO2 welding process. Adv Mater Res 538-541:1447–1450

    Article  Google Scholar 

  29. Yong C, Fangfei S, Kangli C, XinQi Y, Guanyu Z, Shaokang G (2012) Effects of shielding gas and magnetic field on characteristics of AZ31 magnesium alloy by TIG welding. Mater Sci Forum 704-705:1186–1196

    Google Scholar 

  30. Avilov VV, Gumenyuk A, Lammers M, Rethmeier M (2012) PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support. Sci Technol Weld Join 17(2):128–133

    Article  Google Scholar 

  31. Li Y, Wu CS, Wang L, Gao JQ (2016) Analysis of additional electromagnetic force for mitigating the humping bead in high-speed gas metal arc welding. J Mater Process Technol 229:207–215

    Article  Google Scholar 

  32. Renteria MAG, Morelos VHL, Garcia HR, Becerril EB, Sánchez JAG (2015) Electrochemical characterization of AISI 2205 duplex stainless steel welded joints with electromagnetic interaction. Procedia Materials Science 8:950–958

    Article  Google Scholar 

  33. Wang L, Ji C, Wu C, Gao J (2016) Backward flowing molten metal in weld pool and its influence on humping bead in high-speed GMAW. J Mater Process Technol 237:342–350

    Article  Google Scholar 

  34. Hirata Yoshinori, Nomura Kazufumi, Morisaki Kazuyuki. Magnetic control of TIG arc plasma. 8th Interntional Conference on Trends in Welding Research, 2009: 721–725.

  35. Qingjie S, Wang J, Chunwei C, Qian L, Jicai F (2016) Optimization of magnetic arc oscillation system by using double magnetic pole to TIG narrow gap welding. Int J Adv Manuf Technol 86(1):761–767

    Google Scholar 

  36. Wang X, Liang W, Suhong S (2013) The influence of rotating magnetic field on DCEN MAG industry welding based on properties of welding materials. Adv Mater Res 675:148–151

    Article  Google Scholar 

  37. Wagner S, Barth SDM, Schubert F, Köhler B (2014) Welding for testability: an approach aimed at improving the ultrasonic testing of thick-walled austenitic and dissimilar metal welds. AIP Conference Proceedings 1581:1045–1052

    Article  Google Scholar 

  38. Yao Q, Luo Z, Li Y, Yan FY, Duan R (2014) Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resistance spot weld. Mater Des 63:200–207

    Article  Google Scholar 

  39. Takeda K, Okubo H, Sugimoto M (2014) Time response of arc driven by alternating magnetic field. 13th High-Tech Plasma Processes Conference Journal of Physics, Conference Series 550:012011

    Article  Google Scholar 

  40. Nomura K, Morisaki K, Hirata Y (2009) Magnetic control of arc plasma and its modelling. Welding in the World 53(7/8):181–187

    Article  Google Scholar 

  41. Kazufumi N, Yousuke O, Yoshinori H (2012) Shape control of TIG arc plasma by cusp-type magnetic field with permanent magnet. Weld J 26(10):759–764

    Article  Google Scholar 

  42. Luo J, Zongxiang Y, Xue K (2016) Anti-gravity gradient unique arc behavior in the longitudinal electric magnetic field hybrid tungsten inert gas arc welding. Int J Adv Manuf Technol 84(1–4):647–661

    Google Scholar 

  43. Lee SH, Kim JS, Lee BY, Lee SY (2005) The effect of external electromagnetic force in gas metal arc welding on the transfer mode. Key Eng Mater 297-300:2825–2830

    Article  Google Scholar 

  44. Xianqing Y, Jianjun G, Jianxun Z, Jiangtao S (2012) Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields. J Phys D Appl Phys 45(8):1–13

    Google Scholar 

  45. Wang Q, Zhu S, Fengliang Y, Liang Y, Wang X (2012) Numerical simulation of MIG welding arc with longitudinal magnetic field. Mater Sci Forum 704-705:668–673

    Article  Google Scholar 

  46. Naomi M, Ikumi K, Takeo Y, Masaya S, Koichi T (2012) Arc behavior in non-uniform AC magnetic field[J]. ISIJ Int 52(3):488–492

    Article  Google Scholar 

  47. Espina-Hernandez JH, Caleyo F, Hallen JM, Rueda-Morales GL, Perez-Baruch E, Lopez-Montenegro A (2010) Method to reduce arc blow during DC arc welding of pipelines. 8th International Pipeline Conference-Proceedings of the ASME International Pipeline Conference 3:387–392

    Google Scholar 

  48. Lu L, Yunlong C, Yingmin L, Gao F (2013) Mechanism analysis of magnetic control high-speed welding undercuts disappear. Adv Mater Res 774-776:1127–1131

    Article  Google Scholar 

  49. Shujun C, Aibing H, Shuyan Y (2006) Arc movement characteristics of TIG welding in a rotating magnetic field. (in Chinese) Welding & Joining (10):34–36

  50. Chuanwei S, Yong Z, Zengda Z, Wu D (2015) Electromagnetic characteristic o fTwin-wire indirect arc welding. Chinese Journal of Mechanical Engineering 28(1):123–131

    Article  Google Scholar 

  51. Shunshan Z, Yong Z, Zengda Z (2011) Effect of applied magnetic field on metal transfer of twinwire indirect arc welding. (in Chinese) Transactions of the China Welding Institution. 32(6):69–72

    Google Scholar 

  52. Wang X, Zhang W, Wang Y (2012) The influence of longitudinal magnetic field on DCEN MAG welding. Applied Mechanics and Materials 217-219:1843–1846

    Article  Google Scholar 

  53. Yunlong C, Xiaolong L, Lu L, Babkin AS, Young LB, Gao F (2014) Impacts of external longitudinal magnetic field on arc plasma and droplet during short-circuit GMAW. Int J Adv Manuf Technol 70(9–12):1543–1553

    Google Scholar 

  54. Hui L, Qingjie S, Ximing L, Hongyun Z, Jicai F (2013) Research status and development trend of magnetically controlled welding technology. Adv Mater Res 712-715:584–589

    Article  Google Scholar 

  55. García-Rentería MA, López-Morelos VH, García-Hernández R, Dzib-Pérez L, García-Ochoa EM, González-Sánchez J (2014) Improvement of localised corrosion resistance of AISI 2205 duplex stainless steel joints made by gas metal arc welding under electromagnetic interaction of low intensity. Appl Surf Sci 321:252–260

    Article  Google Scholar 

  56. Siamak N, Hossein A, AmirHossein K, Mahdi S, Keyvan F (2016) Newly developed technique to eliminate hot cracking with electromagnetic vibration for joining of 2024 aluminum alloy. Metallography, Microstructure, and Analysis 5(1):7–15

    Article  Google Scholar 

  57. Shoichi M, Yukio M, Koki T, Yasushi T, Yukinori M, Yusuke M (2013) Study on the application for electromagnetic controlled molten pool welding process in overhead and flat position welding. Sci Technol Weld Join 18(1):38–44

    Article  Google Scholar 

  58. Wang L, Wu CS, Gao JQ (2016) Suppression of humping bead in high speed GMAW with external magnetic field. Sci Technol Weld Join 21(2):131–139

    Article  Google Scholar 

  59. Kiselev AS, Gordynets AS, Dediukh RI, Saraev RN, Golikov NI (2015) Efficiency increase of arc welding of the magnetized pipelines with coated electrodes during repair works. Voprosy materialovedeniya 1(81):205–209

    Google Scholar 

  60. Nosov DG, Peremitko VV (2015) Influence of frequency and induction of longitudinal magnetic field on the electrode metal loss and its spattering during MAG-welding. IOP Conference Series-Materials Science and Engineering 91:012011

    Article  Google Scholar 

  61. Lee C-K, Lee W (2013) The effect of magnetic fields for laser welding process using carbon steel. Int J Precis Eng Manuf 14(11):1915–1923

    Article  Google Scholar 

  62. Janaki Ram GD, Murugesan R, Sundaresan S (1999) Fusion zone grain refinement in aluminum alloy welds through magnetic arc oscillation and its effect on tensile behavior. J Mater Eng Perform 8(5):513–520

    Article  Google Scholar 

  63. Arturo GRM, Hugo LMV, Rafael GH, Curiel LF, José L-R (2013) Effect on the microstructure and mechanical properties of the electromagnetic stirring during GMA welding of 2205 DSS plates. Mater Sci Forum 755:61–68

    Article  Google Scholar 

  64. Curiel Francisco F, Rafael G, Lopez Victor H, González-Sánchez J (2011) Enhancing corrosion resistance of 304 stainless steel GMA welds with electromagnetic interaction. Mater Trans 52(8/SI):1701–1704

    Article  Google Scholar 

  65. Yunhai S, Lin J, Zhipeng K (2013) Effect of magnetic field current on microstructure and properties of AZ91 magnesium alloy welded joint. Adv Mater Res 690-693:2570–2573

    Article  Google Scholar 

  66. Lu L, Yunlong C, Yingmin L, Lu M (2013) Optimized design on condensing tubes high-speed TIG welding technology magnetic control based on genetic algorithm. AIP Conference Proceedings 1532:1100–1105

    Article  Google Scholar 

  67. Zhengjun L, Duo L, Chang-jun L (2012) Comparison of microstructure and properties of Ni-based overlay deposit under longitudinal magnetic field and transverse magnetic field. Adv Mater Res 557-559:1742–1746

    Article  Google Scholar 

  68. Zhengjun L, Duo L, Wu X (2012) Comparison of microstructure and properties of Co-based overlay deposit under longitudinal magnetic field and transverse magnetic field. Adv Mater Res 557-559:1747–1751

    Article  Google Scholar 

  69. Lu H, Wang L, Yunhai S (2014) The research on microstructure and properties of WQ960 welded joints under under longitudinal magnetic field. AER-Advances in Engineering Research 5:92–95

    Google Scholar 

  70. Zhu S, Wang Q, Wang X, Guofeng H (2011) Analysis on thermal efficiency and softening behavior of MIG welding with longitudinal magnetic field. Adv Mater Res 148-149:326–331

    Article  Google Scholar 

  71. Yang L, Luo Z, Fuyu Y, Rui D, Qi Y (2014) Effect of external magnetic field on resistance spot welds of aluminum alloy. Mater Des 56:1025–1033

    Article  Google Scholar 

  72. Mousavi MG (2014) Grain refinement and elimination of hot cracks due to application of electromagnetic stirring in commercial aluminum alloy welds. Adv Mater Res 875-877:1306–1311

    Article  Google Scholar 

  73. Luo J, Wang XM, Fei L, Quanxiang L (2011) 卷 Numerical simulation for temperature field of ZK60 magnesium alloy sheet butt-welded in GTAW hybrid a longitudinal electromagnetic field. Adv Mater Res 215:5–8

    Article  Google Scholar 

  74. Curiel Rafael García Francisco F, López VH, García MA, Lemus J (2013) Transmission electron microscopy in the heat affected zone of an AISI 304 austenitic stainless steel welded with the application of a magnetic field of low intensity. Mater Trans 54(1):122–125

    Article  Google Scholar 

  75. Psyk V, Risch D, Kinsey BL, Tekkayaa AE, Kleinera M (2011) Electromagnetic forming-a review. J Mater Process Technol 211(5/SI):787–829

    Article  Google Scholar 

  76. Xu W, Wenqing S, Wang X, Jianbing M, Wang LJ (2011) Numerical and experimental research on the flexible forming of metal sheet using magnetic-driving plasma arc. Adv Mater Res 264-265:18–23

    Article  Google Scholar 

  77. Qilin Z, Shuyuan J, Huanming C, Pin L (2012) 3D FEM simulation analysis for the residual stress to GTAW welded joints based on adscititious magnetic field. Applied Mechanics and Materials 138-139:775–779

    Google Scholar 

  78. Sunar BA, Tuparjono E, Frisman S, Adrian Y, Winarto (2014) Improvement of tungsten inert gas(TIG) welding penetration using the effect of electromagnetic field. Applied Mechanics and Materials 493(1):558–563

    Google Scholar 

  79. Nabeel A, Chung H (2015) Alternating current-gas metal arc welding for application to thick plates. J Mater Process Technol 222:75–83

    Article  Google Scholar 

  80. Gatzen M, Tang Z, Vollertsen F, Mizutani M, Katayama S (2011) X-ray investigation of melt flow behavior under magnetic stirring regime in laser beam welding of aluminum. Journal of Laser Applications 23(3):032002

    Article  Google Scholar 

  81. Philipp S, Michael R (2015) Understanding grain refinement in aluminium welding. Weld World 59:767–784

    Article  Google Scholar 

  82. Jing Z, Cheng Y, Ke H, Xunzhe Z, Xu Z, Qijie Z (2016) Numerical and experimental studies of surface-pulsed magneto-oscillation on solidification. J Mater Process Technol 229:286–293

    Article  Google Scholar 

  83. Easton MA, Qian M, Prasad A, StJohn DH (2016) Recent advances in grain refinement of light metals and alloys. Curr Opin Solid State Mater Sci 20(1/SI):13–24

    Article  Google Scholar 

  84. Liang D, Liang Z, Qijie Z, Wang G, StJohn DH (2014) Nucleation and grain formation of pure Al under pulsed magneto-oscillation treatment. Mater Lett 130:48–50

    Article  Google Scholar 

  85. Gao X, Yuquan C (2014) Detection of micro gap weld using magneto-optical imaging during laser welding. Int J Adv Manuf Technol 73:23–33

    Article  Google Scholar 

  86. Takayuki H, Hironobu Y, Toshihiko K, Tsukada MTK (2008) Detection of the weak magnetic properties change of stainless-steel welding parts by low frequency magnetic imaging. J Appl Phys 103(7):07E923

    Article  Google Scholar 

  87. de Macedo Silva E, Pereira LJ, Pereira LJ, Macedo LFW, de Albuquerque Victor Hugo C, Tavares João Manuel RS (2016) Induced magnetic field used to detect the sigma phase of a 2205 duplex stainless steel. J Nondestruct Eval 35:28

    Article  Google Scholar 

  88. Tanaka M, Tashiro S, Tsujimura Y (2012) Visualizations and predictions of welding arcs. Trans JWRI 41(2):1–5

    Google Scholar 

  89. Park JM, Kim KS, Hwang TH, Hong SH (2004) Three-dimensional modeling of arc root rotation by external magnetic field in nontransferred thermal plasma torches. IEEE Transactions on Plasma Science 32(2):479–487

    Article  Google Scholar 

  90. Dae-Won C, Suck-Joo N, Min-Hyun C, Lee J-S (2013) Simulations of weld pool dynamics in V-groove GTA and GMA welding. Weld World 57:223–233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlong Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Chang, Y., Lu, L. et al. Review on magnetically controlled arc welding process. Int J Adv Manuf Technol 91, 4263–4273 (2017). https://doi.org/10.1007/s00170-017-0068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0068-9

Keywords

Navigation