Skip to main content
Log in

Mathematical model of plowing forces to account for flank wear using FME modeling for orthogonal cutting scheme

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This article develops a model simulating the formation of the tension condition on the flank surface of a tool’s tooth in orthogonal cutting based on the example of face milling and using the plastic theory of contact interaction of bodies. A calculation was performed in the ANSYS/LS-DYNA program using the finite element method. The model allows us to determine the stress value on the cutting tool’s flank surface for various cutting modes. Analysis of the orthogonal cutting process has been carried out using the simulation model that allows the following to be defined: the flank surface stress diagram model, introducing the flank wear value defined by the processes of the shear zone, and contact interaction of the cutting tool’s flank surface and the workpiece. The basic and normal cutting force components in the cross section perpendicular to the cutting edge were obtained. Our main result is the mathematical model of the force in the orthogonal cutting scheme, introducing the force components on the front surface conditioned by the processes of the shear zone and on the flank surface of the cutting tool, introducing the flank wear value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht P (1960) New developments in the theory of the metal cutting processes, part 1. The ploughing process in metal cutting. ASME J Eng Ind 82:348–357

    Article  Google Scholar 

  2. Zorev NN (1961) Mechanics of metal cutting. Moscow, Mashgiz

    Google Scholar 

  3. Stevenson R (1998) The measurement of parasitic forces in orthogonal cutting. Int J Mach Tools Manuf 38(1–2):113–130

    Article  Google Scholar 

  4. Cui X, Zhao J (2012) Cutting force and tool wear in face milling of hardened steel. Mat Sci Forum 723:77–81. doi:10.4028/www.scientific.net/MSF.723.77

  5. Chang C-S (2001) A force model of face milling tool considering wear. J Chin Soc Mech Eng Trans Chin Inst Eng Ser C/Chung-Kuo Chi Hsueh Kung Ch’eng Hsuebo Pao 22(3):187–202

    Google Scholar 

  6. Matsumura T, Shimada M, Teramoto K, Usui E (2013) Predictive cutting force model and cutting force chart for milling with cutter axis inclination. Int J Autom Technol 7(1):30–38

    Article  Google Scholar 

  7. Pimenov DY, Guzeev VI, Koshin AA (2011) Influence of cutting conditions on the stress at tool rear surface. Rus Eng Res 31(11):1151–1155. doi:10.3103/S1068798X11110207

    Article  Google Scholar 

  8. Popov A, Dugin A (2014) Effect of uncut chip thickness on the ploughing force in orthogonal cutting. Int J Adv Manuf Technol 76(9–12):1937–1945. doi:10.1007/s00170-014-6423-1

    Google Scholar 

  9. Lipatov AA, Chigirinskii YL, Kormilitsyn SI (2010) Determining the cutting forces at the rear tool surface. Rus Eng Res 30(11):1158–1160. doi:10.3103/S1068798X10110183

    Article  Google Scholar 

  10. Popov A, Dugin A (2012) Experimental methods of determining the cutting forces at the tool rear surface. Rus Eng Res 32(1):68–69. doi:10.3103/S1068798X12010248

    Article  Google Scholar 

  11. Popov A, Dugin A (2013) A comparison of experimental estimation methods of the ploughing force in orthogonal cutting. Int J Mach Tools Manuf 65:37–40. doi:10.1016/j.ijmachtools.2012.09.003

    Article  Google Scholar 

  12. Guo Y, Chou Y (2004) Determination of ploughing force and its influence on material properties in metal cutting. J Mater Process Technol 148(3):368–375. doi:10.1016/j.jmatprotec.2004.02.052

    Article  Google Scholar 

  13. Karpat Y, Özel T (2006) Predictive analytical and thermal modeling of orthogonal cutting process—part II: effect of tool flank wear on tool forces, stresses, and temperature distributions. J Manuf Sci E-T ASME 128(2):445–453. doi:10.1115/1.2162591

    Article  Google Scholar 

  14. Wang J, Huang CZ, Song WG (2003) The effect of tool flank wear on the orthogonal cutting process and its practical implications. J Mater Process Technol 142(2):338–346. doi:10.1016/S0924-0136(03)00604-6

    Article  Google Scholar 

  15. Tang ZT, Liu ZQ, Pan YZ, Wan Y, Ai X (2009) The influence of tool flank wear on residual stresses induced by milling aluminum alloy. J Mater Process Technol 209(9):4502–4508. doi:10.1016/j.jmatprotec.2008.10.034

    Article  Google Scholar 

  16. Waldorf DJ, Kapoor SG, DeVor RE (1999) Worn tool forces based on ploughing stresses. SME Tech Paper MR (MR99–171): 1–6

  17. Waldorf DJ, Kapoor SG, DeVor RE (1998) A slip-line field for ploughing during orthogonal cutting. ASME J of Manuf Sci Eng 120(4):693–699

    Article  Google Scholar 

  18. Manjunathaiah J, Endres WJ (2000) A new model and analysis of orthogonal machining with an edge-radiused tool. J Manuf Sci E-T ASME 122(3):384–390

    Article  Google Scholar 

  19. Schimmel RJ, Endres WJ, Stevenson R (2000) Effect of zero-clearance lands in orthogonal machining in light of an internally consistent material model. Mach Sci Technol 4(1):101–125

    Article  Google Scholar 

  20. Coelho RT, Braghini JA, Valente CMO, Medalha GC (2003) Experimental evaluation of cutting force parameters applying mechanistic model in orthogonal milling. J Braz Soc Mech Sci Eng 25(3):247–253

    Article  Google Scholar 

  21. Kishawy HA, Haglund AJ, Deiab IM (2006) An analysis of machining with honed tools using ale finite element model: ploughing force and minimum chip thickness. Trans N Am Manuf Res Inst SME 34:277–284

    Google Scholar 

  22. Liu K, Melkote SN (2007) Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int J Mech Sci 49(5):650–660. doi:10.1016/j.ijmecsci.2006.09.012

    Article  Google Scholar 

  23. Chermenskii ON, Borisov ED (2009) Analysis of cutting on the basis of plasticity theory. Rus Eng Res 29(2):169–174. doi:10.3103/S1068798X09020130

    Article  Google Scholar 

  24. Dundur ST, Das NS (2009) Slipline field modeling of orthogonal machining for a worn tool with elastic effects and adhesion friction at the contact regions. J Mater Process Technol 209(1):18–25. doi:10.1016/j.jmatprotec.2008.01.022

    Article  Google Scholar 

  25. Wyen C-F, Wegener K (2010) Influence of cutting edge radius on cutting forces in machining titanium. CIRP Ann Manufac Techn 59(1):93–96. doi:10.1016/j.cirp.2010.03.056

    Article  Google Scholar 

  26. Afazov SM, Ratchev SM, Segal J (2010) Modelling and simulation of micro-milling cutting forces. J Mater Process Technol 210(15):2154–2162. doi:10.1016/j.jmatprotec.2010.07.033

    Article  Google Scholar 

  27. Storch B, Zawada-Tomkiewicz A (2012) Distribution of unit forces on the tool edge rounding in the case of finishing turning. Int J Adv Manuf Technol 60(5–8):453–461. doi:10.1007/s00170-011-3617-7

    Article  Google Scholar 

  28. Afazov SM, Ratchev SM, Segal J (2012) Prediction and experimental validation of micro-milling cutting forces of AISI H13 steel at hardness between 35 and 60 HRC. Int J Adv Manuf Technol 62(9–12):887–899. doi:10.1007/s00170-011-3864-7

    Article  Google Scholar 

  29. Annoni M, Biella G, Rebaioli L, Semeraro Q (2013) Microcutting force prediction by means of a slip-line field force model. Procedia CIRP 8:558–563. doi:10.1016/j.procir.2013.06.150

    Article  Google Scholar 

  30. Oraby SE (2013) Influence of regular and random cutting tool deformation on the cutting force of three-dimensional turning operation. Int J Mach Mach Mater 14(4):311–341. doi:10.1504/IJMMM.2013.057585

    Google Scholar 

  31. Wang BB, Xie LJ, Wang XB, Chen XL (2014) Simulation studies of the cutting process on SiCp/Al composites with different volume fraction of reinforced SiC particles. Mat Sci Forum 800–801:321–326. doi:10.4028/www.scientific.net/MSF.800-801.321

  32. Uysal A, Altan E (2014) A new slip-line field modeling of orthogonal machining with a rounded-edge worn cutting tool. Mach Sci Technol 18(3):386–423. doi:10.1080/10910344.2014.925375

    Article  Google Scholar 

  33. Zhang H, Wang X, Pang S (2014) A mathematical modeling to predict the cutting forces in microdrilling. Math Probl Eng 2014:543298. doi:10.1155/2014/543298

    Google Scholar 

  34. Wang G, Dong H, Guo Y, Ke Y (2015) Dynamic cutting force modeling and experimental study of industrial robotic boring. Int J Adv Manuf Technol (Article in Press). doi:10.1007/s00170-015-8166-z

    Google Scholar 

  35. Rebaioli L, Biella G, Annoni M, Rhett Mayor J, Semeraro Q (2015) Applicability of an orthogonal cutting slip-line field model for the microscale. Proc Inst Mech Eng B J Eng Manuf 229(12):2250–2264. doi:10.1177/0954405414553456

    Article  Google Scholar 

  36. Uysal A, Altan E (2015) Effect of ploughing force on cutting forces in micro-cutting with a rounded-edge cutting tool. Mater Today: Proc 2(1):224–229. doi:10.1016/j.matpr.2015.04.026

    Article  Google Scholar 

  37. Armarego IJA, Braun RH (1977) Metal cutting. Mashinostroenie, Moscow

    Google Scholar 

  38. Black DT (1979) Model of the stress due to plastic flow in metal cutting. Trans ASME 4:124–126

    Google Scholar 

  39. Arola D, Ramulu M (1997) Orthogonal cutting of fiber-reinforced composites: a finite element analysis. Int J Mech Sci 39(5):597–613

    Article  MATH  Google Scholar 

  40. Vahid K, Lundblad M, Lindgren L-E (2001) Numerical and experimental analysis of orthogonal metal cutting. Doctoral Thesis. Instituten för Maskintechnik Avdelningen för Datorstödd maskinkonstruktion, 28, ISSN: 1402–1544•ISRN: LTU-DT. 01/28--SE p. 7

  41. Koshin AA (1995) Theory and optimization of the accuracy of multiple-cutter machining. Dis ... Dr. eng. sciences, Chelyabinsk: South Urals State University

  42. Birger IA, Panovko YG (1968) Strength, stability, vibration. Handbook in three volumes. Vols. 1 and 2. Moscow, Mashinostroenie

  43. Sedov LI (1970) Continuum mechanics, vol 1. Mashinostroenie, Moscow, p. 492

    Google Scholar 

  44. Luriye AI (1970) Elasticity theory. Science, Moscow 940 p

    Google Scholar 

  45. Jeffriss G, Swirls B (1970) Mathematical physics methods. Translated from English. / Edited by Zharova V.N. Moscow, Mir., 352 p

  46. Korchak SN (1971) Influence of technological factors on the productivity in milling steel parts: Dis ... Dr. eng. sciences, Chelyabinsk: South Urals State University

  47. D’yakonov AA (2012) Improvement of grinding speeds by assessing the machinability of materials. Rus Eng Res 32(7–8):604–607. doi:10.3103/S1068798X12060068

    Article  Google Scholar 

  48. Polukhin PI, Gun GY, Galkin AM (1976) Resistance of metals and alloys to plastic deformation. Metallurgiya, Moscow

    Google Scholar 

  49. AG Rahshtadta, VA Brostrema (1976). Handbook metallist: Handbook in 5 volumes. Vol. 2, Mashinostroenie, 720 p

  50. Gallagher R (1984) Finite element analysis. Fundamentals: Trans. from English Moscow. Mir. 428 p

  51. Komvopoulos K, Erpenbeck SA (1990) Finite element modeling of orthogonal metal cutting. ASME Mater Div 20:1–23

    Google Scholar 

  52. Chen L, El-Wardany TI, Harris WC (2004) Modelling the effects of flank wear land and chip formation on residual stresses. CIRP Ann Manuf Technol 53(1):95–98. doi:10.1016/S0007-8506(07)60653-2

  53. Swenson ED, Black JT (2011) Finite element model tuning with spatially-dense 3D modes. Exp Mech 51(6):933–945. doi:10.1007/s11340-010-9421-8

  54. Daoud M, Chatelain JF, Bouzid A (2015) Effect of rake angle on Johnson-Cook material constants and their impact on cutting process parameters of Al2024-T3 alloy machining simulation. Int J Adv Manuf Technol 81(9–12):1987–1997. doi:10.1007/s00170-015-7179-y

    Article  Google Scholar 

  55. ANSYS Release 10.0 Documentation

  56. Guzeev VI, Batuev VA, Surkov IV (2005) Cutting regimes for turning and mill-boring machines with program numerical control.Spravochnik, Guzeev VI, Ed, Moscow: Mashinostroenie

  57. Poletika MF (1969) Contact loads on the tool cutting surfaces. Mashinostronie, Moscow

    Google Scholar 

  58. Guzeev VI (1994) More productive contour machining of parts of different precision on numerically controlled lathes and milling machines, Dis. .. Dr. eng. sciences, Chelyabinsk: South Urals State University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Pimenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenov, D.Y., Guzeev, V.I. Mathematical model of plowing forces to account for flank wear using FME modeling for orthogonal cutting scheme. Int J Adv Manuf Technol 89, 3149–3159 (2017). https://doi.org/10.1007/s00170-016-9216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9216-x

Keywords

Navigation