Skip to main content
Log in

Investigation on the profile of microhole generated by electrochemical micromachining using retracted tip tool

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electrochemical micromachining (EMM) is becoming an effective technology to manufacture microparts due to its multiple advantages of almost no tool wear, almost forceless machining, no heat effect and relatively high removal rate, etc. However, accuracy controlling is the key issue which limits the industrial application of EMM. From the current theory and industrial practice, traditional side-insulated flat tip tool often causes bell-mouth profile at entrance and exit, rough surface on the top and bottom of workpiece, and excess radial overcut due to the dispersed distribution of electrical field. To improve the machining accuracy, a novel tool structure with retracted electrode tip is proposed for EMM of microhole in the present work. The effect of the novel tool structure on machining accuracy was studied with both simulation and experiments. Simulation results show that electrical field distribution with retracted tip tool is increasingly confined to the electrode region compared to the flat tip tool throughout the EMM process. Experiments were carried out to verify the advantages of the retracted tip tool and investigate the effect of tip retracted depth on machining accuracy. The critical criterions, including depth average radial overcut (DAROC), entrance profile, exit profile, and surface quality at the entrance and exit were measured to evaluate the machining accuracy. The experimental results show that high-quality microhole with sharp entrance and exit profile, smooth surface, and small DAROC can be successfully manufactured using a retracted tip tool with the optimum tip retracted depth of 71 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McGeough JA, Leu MC, Rejurkar KP, AKM D s, Liu Q (2001) Electroforming process and application to micro/macro manufacturing. Ann CIRP 50(2):499–514

    Article  Google Scholar 

  2. Rajurkar KP, Levy G, Malshe AP, Sundaram MM, McGeough JA, Hu X, Resick R, DeSilva A (2006) Micro and nano machining by electro-physical and chemical processes. Ann CIRP 55(2):643–666

    Article  Google Scholar 

  3. Schuster R, Kirchner V, Allongue P, Ertl G (2000) Electrochemical micromachining. Science 289:98–101

    Article  Google Scholar 

  4. Alexandre S, Atanas I (2013) Recent developments and research challenges in electrochemical micromachining (μECM). Int J Adv Manuf Technol 69:563–581

    Article  Google Scholar 

  5. Bhattacharyya B, Munda J, Malapati M (2004) Advancement in electrochemical micro-machining. Int J Mach Tools Manuf 44(15):1477–1589

    Article  Google Scholar 

  6. Lee ES, Baek SY, Cho CR (2005) A study of the characteristics for electrochemical micromachining with ultra-short voltage pulses. Int J Adv Manuf Technol 31:762–769

    Article  Google Scholar 

  7. Lee ES, Park JW, Moon YH (2002) A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing. Int J Adv Manuf Technol 20:720–726

    Article  Google Scholar 

  8. Ahn SH, Ryu SH, Choi DK, Chu CN (2004) Electro-chemical micro drilling using ultra short pulses. Precis Eng 28:129–134

    Article  Google Scholar 

  9. Mithu MAH, Fantoni G, Ciampi J (2011) A step towards the in-process monitoring for electrochemical microdrilling. Int J Adv Manuf Technol 57:969–982

    Article  Google Scholar 

  10. Thanigaivelan R, Arunachalam RM, Drukpa P (2012) Drilling of micro-holes on copper using electrochemical micromachining. Int J Adv Manuf Technol 61:1185–1190

    Article  Google Scholar 

  11. Fang XL, Qu NS, Li HS, Zhu D (2013) Enhancement of insulation coating durability in electrochemical drilling. Int J Adv Manuf Technol 68:2005–2013

    Article  Google Scholar 

  12. Fang ZW, Hourng LW, Lin MY (2011) Experimental investigation on the influence of electrochemical micro-drilling by short pulsed voltage. Int J Adv Manuf Technol 61:957–966

    Google Scholar 

  13. Jain VK, Kalia S, Sidpara A, Kulkarni VN (2012) Fabrication of micro-features and micro-tools using electrochemical micromachining. Int J Adv Manuf Technol 61:1175–1183

    Article  Google Scholar 

  14. Mithu MAH, Fantoni G, Ciampi J (2013) How microtool dimension influences electrochemical micromachining. Int J Adv Manuf Technol 70:1303–1312

    Article  Google Scholar 

  15. Lim YM, Kim SH (2001) An electrochemical fabrication method for extremely thin cylindrical micropin. Int J Mach Tools Manuf 41(15):2287–2296

    Article  Google Scholar 

  16. Kim BH, Na CW, Lee YS, Choi DK, Chu CN (2005) Micro electrochemical machining of 3D micro structure using dilute sulfuric acid. Ann CIRP 54(1):191–194

    Article  Google Scholar 

  17. Liu Y, Cai HT, Li HS (2015) Fabrication of micro spherical electrode by one pulse EDM and their application in electrochemical micromachining. J Manu Processes 17:162–170

    Article  Google Scholar 

  18. Liu Y, Zhu D, Zeng YB, Yu HB (2011) Development of microelectrodes for electrochemical micromachining. Int J Adv Manuf Technol 55:195–203

    Article  Google Scholar 

  19. Ghoshal B, Bhattacharyya B (2014) Shape control in micro borehole generation by EMM with the assistance of vibration tool. Precis Eng 38:127–137

    Article  Google Scholar 

  20. Ghoshal B, Bhattacharyya B (2015) Investigation on profile of microchannel generated by electrochemical micromachining. J Mater Process Tech 222:410–421

    Article  Google Scholar 

  21. Li Y, Zheng YF, Yang G, Peng LQ (2003) Localized electrochemical micromachining with gap control. Sensor Actuat B: Chem 108:144–148

    Article  Google Scholar 

  22. Klocke F, Klink A, Veselovac A, Aspinwall DK, Soo SL, Schmidt M, Schilp J, Levy G, Kruth JP (2014) Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes. CIRP Ann-Manuf Techn 63:703–726

    Article  Google Scholar 

  23. Thummler T (2008) Herstellung von komplexen Kühlluft bohrungen in Hochdruck turbinenschaufeln. MTU Aero Engines., http://www.mtu.de/

    Google Scholar 

  24. Elecktrochemische Abtragen (2009) Verein Deutscher Ingenieure VDI-Richtlinie 3401-1(Entwurf)., http://www.vdi.de/

    Google Scholar 

  25. Hinduja S, Kunieda M (2013) Modelling of ECM and EDM processes. CIRP Ann-Manuf Techn 62:775–797

    Article  Google Scholar 

  26. Koenig W, Wertheim R, Jutzler WI (1970) Accuracy and optimal working conditions in electrochemical machining. Ann CIRP 18:223–230

    Google Scholar 

  27. Koenig W, Degenhardt H (1971) The influence of process parameters and geometry on the development in electrochemical machining densities. The Electrochemical Society Inc., Princeton

    Google Scholar 

  28. Tipton H (1964) The dynamics of electrochemical machining. Proc. 5th Int. MTDR Conf, University of Birmingham

    Google Scholar 

  29. Jain VK, Pandey PC (1980) Tooling design for ECM. Precis Eng 2:195–206

    Article  Google Scholar 

  30. Hocheng H, Sun YH, Lin SC, Kao PS (2003) A material removal analysis of electrochemical machining using flat-end cathode. J Eng Math 5:233–240

    Google Scholar 

  31. Klingert JA, Lynn S, Tobias CW (1964) Evaluation of current distribution in electrode systems by high-speed digital computers. Electrochim Acta 9:89–92

    Article  Google Scholar 

  32. Prentice GA, Tobias CW (1982) Finite difference calculation of current distribution at polarized electrodes. AICHE J 28:486–492

    Article  Google Scholar 

  33. Hardisty H, Mileham AR (1999) Finite element computer investigation of the electrochemical machining process. Ann CIRP 51(1):165–168

    Google Scholar 

  34. Christiansen S, Rasmussen J (1976) Numerical solution for two-dimensional annular electrochemical machining problems. J Appl Electrochem 31:45–154

    Google Scholar 

  35. Narayanan OH, Hinduja S, Noble CF (1986) Design of tools for electrochemical machining by the boundary element methods. P I Mech Eng B-J Eng 200:195–205

    Google Scholar 

  36. Datta M, Landolt D (2000) Fundamental aspects and application of electrochemical microfabrication. Electrochim Acta 45:2535–2558

    Article  Google Scholar 

  37. Chen XL, Qu NS, Li HS, Guo ZN (2015) Removal of islands from micro-dimple arrays prepared by through-mask electrochemical micromachining. Precis Eng 39:204–211

    Article  Google Scholar 

  38. Mithu MAH, Fantoni G, Ciampi SM (2012) On how tool geometry, applied frequency and machining parameters influence electrochemical micro drilling. CIRP J Manuf Sci Technol 5:202–213

    Article  Google Scholar 

  39. Bard AJ, Faulkner LR (2001) Electrochemcial method: fundamentals and applications, 2nd edn. John Wiley and sons, New York

    Google Scholar 

  40. Jain VK, Kanetkar Y, Gk L (2005) Stray current attack and stagnation zones in electrochemical drilling. Int J Mach Tools Manuf 26:527–536

    Article  Google Scholar 

  41. Wang W, Zhu D, Qu SN, Huang SF, Fang XL (2010) Electrochemical drilling with vacuum extraction of electrolyte. J Mater Process Tech 210:238–244

    Article  Google Scholar 

  42. Rathod V, Doloi B, Bhattacharyya B (2015) Influence of electrochemical micromachining parameters during generation of microgrooves. Int J Adv Manuf Technol 76:51–60

    Article  Google Scholar 

  43. Bhattacharyya B, Munda J (2003) Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain. Int J Mach Tools Manuf 43:1301–1310

    Article  Google Scholar 

  44. Alexander S, Atanas I (2014) Design of an electrochemical micromachining machine. Int J Mach Tools Manuf 78:737–753

    Google Scholar 

  45. Alexander S, Atanas I (2013) Design of a pulse power supply unit for micro-ECM. Int J Mach Tools Manuf 78:537–547

    Google Scholar 

  46. Shearwood C (1995) Levitation of a micromachined rotor for application in a rotating gyroscope. Electron Lett 31:1845

    Article  Google Scholar 

  47. Williams CB, Shearwood C, Mellor PH, Yates RB (1997) Modelling and testing of a frictionless levitated micromotor. Sensor Actuat A: Phys 61:469–473

    Article  Google Scholar 

  48. Zhang ZY, Feng Q, Cai MX, Huang L, Jiang YJ (2015) Research on stress-etching complex microstructure of aluminum alloy in laser electrochemical machining. Int J Mach Tools Manuf 81:2157–2165

    Article  Google Scholar 

  49. Song JL, Xu WJ, Liu X, Lu Y, Sun J (2012) Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability. Appl Phys A 108:559–568

    Article  Google Scholar 

  50. Jiang LM, Du YJ, Jia JC, Lai LJ, Zhou H, Zhu LM, Tian ZW, Tian ZQ, Zhan DP (2013) Three dimensional micromachining on aluminum surface by electrochemical wet stamping technique. Electrochem Commun 33:119–122

    Article  Google Scholar 

  51. Lohregel MM, Rataj KP, Munninghoff T (2016) Electrochemical machining—mechanism of anodic dissolution. Electrochim Acta (In Press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ao, S., Li, Y. et al. Investigation on the profile of microhole generated by electrochemical micromachining using retracted tip tool. Int J Adv Manuf Technol 87, 877–889 (2016). https://doi.org/10.1007/s00170-016-8535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8535-2

Keywords

Navigation