Skip to main content

Advertisement

Log in

Effect of process parameters on tensile strength in plasma-MIG hybrid welding for 2219 aluminum alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

2219 aluminum alloy is one of the most extensively used materials for the fabrication of rocket fuel storage box. This paper aims at revealing effect of process parameters on tensile strength in 2219 aluminum alloy welded by means of the plasma-MIG hybrid welding method. Process parameters such as MIG voltage, plasma gas, plasma current, welding speed, wire feed speed, etc. play a major role in deciding the joint tensile strength. An attempt has been made to establish an empirical relationship between process parameters and the tensile strength by applying a second-order regression model. A central composite design was applied to perform experiments for obtaining input-output data. The established model was tested for its adequacy and significance. Influences of single factor and interactive effect on tensile strength were analyzed. The maximum tensile strength of 2219 aluminum alloy jointed by plasma-MIG hybrid welding was 289.6 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang J, Chen BQ, Zhang BX (2012) Effect of initial microstructure on the hot compression deformation behavior of a 2219 aluminum alloy. Mater Des 34:15–21

    Article  Google Scholar 

  2. Xu WF, Liu JH, Chen DL, Luan GH (2014) Low-cycle fatigue of a friction stir welded 2219-T62 aluminum alloy at different welding parameters and cooling conditions. Int J Adv Manuf Technol 74(1-4):209–218

    Article  Google Scholar 

  3. Li JQ, Liu HJ (2015) Optimization of welding parameters for the reverse dual-rotation friction stir welding of a high-strength aluminum alloy 2219-T6. Int J Adv Manuf Technol 76(5-8):1469–1478

    Article  Google Scholar 

  4. Sevim I, Hayat F, Kaya Y, Kahraman N, Sahin S (2013) The study of MIG weldability of heat-treated aluminum alloys. Int J Adv Manuf Technol 66(9-12):1825–1834

    Article  Google Scholar 

  5. Tasak E, Jastrzebski A (2012) The influence of pulsation of the MIG arc on the structure of aluminium alloy welds. Weld Int 26(12):944–948

    Article  Google Scholar 

  6. Shinichi T, Hiroshi S, Manabu T (2011) Experimental observation of cleaning action of cathode spots in AC TIG welding of aluminum plates. Q J Jpn Weld Soc 29(3):5–8

    Article  Google Scholar 

  7. Atabaki MM, Ma J, Liu W, Kovacevic R (2015) Hybrid laser/arc welding of advanced high strength steel to aluminum alloy by using structural transition insert. Mater Des 75:120–135

    Article  Google Scholar 

  8. Zhang C, Gao M, Li G, Chen C, Zeng XY (2013) Strength improving mechanism of laser arc hybrid welding of wrought AA 2219 aluminium alloy using AlMg5 wire. Sci Technol Weld Join 18(8):703–710

    Article  Google Scholar 

  9. Faraji AH, Goodarzi M, Seyedein SH, Barbieri G, Maletta C (2015) Numerical modeling of heat transfer and fluid flow in hybrid laser-TIG welding of aluminum alloy AA6082. Int J Adv Manuf Technol 77(9-12):2067–2082

    Article  Google Scholar 

  10. Tarasov SY, Rubtsov VE, Kolubaev EA (2014) A proposed diffusion-controlled wear mechanism of alloy steel friction stir welding (FSW) tools used on an aluminum alloy. Wear 318(1-2):130–134

    Article  Google Scholar 

  11. D'Urso G, Giardini C, Lorenzi S, Pastore T (2014) Fatigue crack growth in the welding nugget of FSW joints of a 6060 aluminum alloy. J Mater Process Technol 214(10):2075–2084

    Article  Google Scholar 

  12. Terasaki H, Simpson SW (2005) Modelling of the GMAW system in free flight and short circuiting transfer. Sci Technol Weld Join 10(1):120–124

    Article  Google Scholar 

  13. Jelmorini G, Tichelaar GW, Essers WG, Willems AM, Coops H (1975) Welding characteristics of the plasma-MIG process. Metal Construct 7(1):568–572

    Google Scholar 

  14. Essers WG, Jelmorini G, Tichelaar GW (1972) Arc characteristics and metal transfer with Plasma-MIG welding. Met Constr 4(12):439–447

    Google Scholar 

  15. Baune E, Bonnet C, Liu S (2001) Assessing metal transfer stability and spatter severity in flux cored arc welding. Sci Technol Weld Join 6(3):139–148

    Article  Google Scholar 

  16. Yang T, Gao HM, Zhang SH (2013) The study on plasma-MIG hybrid arc behavior and droplet transfer for mild steel welding. Rev Mater Sci 6(3):459–463

    Google Scholar 

  17. Miranda HC, Scotti A, Ferraresi VA (2007) Identification and control of metal transfer in pulsed GMAW using optical sensor. Sci Technol Weld Join 12(3):249–157

    Article  Google Scholar 

  18. Ono K, Liu ZJ, Era T, Uezono T, Ueyama T, Tanaka M, Nakata K (2003) Development of a plasma MIG welding system for aluminum. Weld Int 23(11):805–809

    Article  Google Scholar 

  19. Zhu PY, Rados M, Simpson SW (1995) A theoretical-study of a gas metal arc welding system. Plasma Sci Technol 4(3):495–500

    Article  Google Scholar 

  20. Elangovan K, Balasubramanian V, Babu S (2008) Developing an empirical relationship to predict tensile strength of friction stir welded AA2219 aluminum alloy. J Mater Eng Perform 17(6):820–830

    Article  Google Scholar 

  21. Gopi S, Manonmani K (2012) Predicting tensile strength of double side friction stir welded 6082-T6 aluminium alloy. Sci Technol Weld Join 17(7):601–607

    Article  Google Scholar 

  22. Singh G, Singh K, Singh J (2014) Modeling of the effect of process parameters on tensile strength of friction stir welded aluminium alloy joints. Exp Tech 38(3):63–71

    Article  Google Scholar 

  23. He H, Yang CL, Chen Z, Lin SB, Fan CL (2014) Strength prediction of aluminum-stainless steel-pulsed TIG welding-brazing joints with RSM and ANN. Acta Metal Sin-Engl 27(6):1012–1017

    Article  Google Scholar 

  24. Montgomery DC (2003) Design and analysis of experiments. Wiley (Asia), Singapore

    Google Scholar 

  25. Davies OL (1978) The design and analysis of industrial experiments. Longmen, New York

    Google Scholar 

  26. Kou S, Wang YH (1986) Weld pool convention and its effect. Weld J 65(3):63–70

    Google Scholar 

  27. Kou S, Sun DK (1985) Fluid flow and weld penetration in stationary arc welds. Metall Trans A 16A:203–213

    Article  Google Scholar 

  28. Yang CL, Lin SB (2003) Arc welding base. HIT Press, Harbin, pp 54–72

    Google Scholar 

  29. Yang T, Xu KW, Wu L (2013) Analysis on ARC characteristics of plasma-MIG hybrid arc welding. Trans China Weld Inst 34(5):62–66

    Google Scholar 

  30. Yang T, Zhang SH, Gao HM, Wu L, Xu KW, Liu YZ (2012) Analysis of mechanism for TIG-MIG hybrid arc properties. Trans China Weld Inst 33(7):25–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Xiong, J. & Chen, H. Effect of process parameters on tensile strength in plasma-MIG hybrid welding for 2219 aluminum alloy. Int J Adv Manuf Technol 84, 2413–2421 (2016). https://doi.org/10.1007/s00170-015-7901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7901-9

Keywords

Navigation