Skip to main content
Log in

A comparison of laser beam machining of micro-channels under dry and wet mediums

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micro-channels have been fabricated in nickel-based superalloy (Inconel 718) through laser beam machining (LBM). Two machining mediums are employed: dry and wet medium. Under the dry medium, laser beam passes through air prior to strike with target surface while under wet medium, the laser beam first travels through a layer of distilled water and reaches the substrate after. For both the machining environments, effects of laser power, pulse repetition rate, and laser scan speed on machined channels’ width, depth, and taperness are investigated. A comparison of parametric effects on machined channels’ profiles has been carried out for the said machining conditions. The results reveal that LBM under distilled water is more productive than LBM under air environment. In one step, wet machining conditions allow to generate a set of two micro-channels, and dry conditions generate one micro-channel. Further, to achieve the optimum dimensions of micro-channels, the appropriate level of each of the investigated laser parameter is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Teng, J.-C. Chu, C. Liu, T. Xu, Y.-F. Lien, J.-H. Cheng, S. Huang, S. Jin, T. Dang, C. Zhang, X. Yu, M.-T. Lee, and R. Greif (2012) “Fluid dynamics in microchannels,” in fluid dynamics, computational modeling and applications, L. H. Juarez, Ed. InTech

  2. Fujioka H, Grotberg JB (2005) The steady propagation of a surfactant-laden liquid plug in a two-dimensional channel. Phys Fluids 17(8):082102

    Article  MathSciNet  MATH  Google Scholar 

  3. Kreutzer MT, Kapteijn F, Moulijn JA, Heiszwolf JJ (2005) Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels. Chem Eng Sci 60(22):5895–5916

    Article  Google Scholar 

  4. Kasperovich G, Hausmann J (2015) Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J Mater Process Technol 220:202–214

    Article  Google Scholar 

  5. Haghbin N, Spelt JK, Papini M (2015) Abrasive waterjet micro-machining of channels in metals: comparison between machining in air and submerged in water. Int J Mach Tools Manuf 88:108–117

    Article  Google Scholar 

  6. Nouraei H, Kowsari K, Spelt JK, Papini M (2014) Surface evolution models for abrasive slurry jet micro-machining of channels and holes in glass. Wear 309(1–2):65–73

    Article  Google Scholar 

  7. Son SW, Lee MK, Oh KH, Jeong SH (2006) Fabrication of titanium microchannels using laser-assisted thermochemical wet etching. J Laser Applic 18(2):131–137

    Article  Google Scholar 

  8. Nieto D, Delgado T, Flores-Arias MT (2014) Fabrication of microchannels on soda-lime glass substrates with a Nd:YVO4 laser. Opt Lasers Eng 63:11–18

    Article  Google Scholar 

  9. Suriano R, Kuznetsov A, Eaton SM, Kiyan R, Cerullo G, Osellame R, Chichkov BN, Levi M, Turri S (2011) Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Appl Surf Sci 257(14):6243–6250

    Article  Google Scholar 

  10. Vázquez E, Ciurana J, Rodríguez CA, Thepsonthi T, Özel T (2011) Swarm intelligent selection and optimization of machining system parameters for microchannel fabrication in medical devices. Mater Manuf Process 26(3):403–414

    Article  Google Scholar 

  11. Kumar A, Gupta MC (2010) Laser machining of micro-notches for fatigue life. Opt Lasers Eng 48(6):690–697

    Article  Google Scholar 

  12. Teixidor D, Ferrer I, Ciurana J, Özel T (2013) Optimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool steel. Robot Comput Integr Manuf 29(1):209–218

    Article  Google Scholar 

  13. N. Ahmed, S. Darwish, A. M. Alahmari, and K. Salik (2015) “Laser ablation process competency to fabricate micro-channels in titanium alloy,” Mat Manufac Process, vol. 0, no. ja, p. null, Mar

  14. N. Ahmed, S. Darwish, and A. M. Alahmari (2015) “Laser ablation and laser -hybrid ablation processes: A review,” Mat Manufac Process vol. 0, no. ja, p. null, May

  15. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51(3):250–280

    Article  Google Scholar 

  16. Cicală E, Soveja A, Sallamand P, Grevey D, Jouvard JM (2008) The application of the random balance method in laser machining of metals. J Mater Process Technol 196(1–3):393–401

    Article  Google Scholar 

  17. A. A. Serkov, E. V. Barmina, G. A. Shafeev, and V. V. Voronov “Laser ablation of titanium in liquid in external electric field,” Appl Surf Sci

  18. Li Y, Itoh K, Watanabe W, Yamada K, Kuroda D, Nishii J, Jiang Y (2001) Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett 26(23):1912–1914

    Article  Google Scholar 

  19. Kruusing A, Leppävuori S, Uusimäki A, Petrêtis B, Makarova O (1999) Micromachining of magnetic materials. Sensors Actuators A Phys 74(1–3):45–51

    Article  Google Scholar 

  20. Dolgaev SI, Lyalin AA, Shafeev GA, Voronov S (1996) Fast etching and metallization of SiC ceramics with copper-vapor-laser radiation. Appl Phys A 63(1):75–79

    Article  Google Scholar 

  21. Kazakevich PV, Simakin AV, Voronov VV, Shafeev GA (2006) Laser induced synthesis of nanoparticles in liquids. Appl Surf Sci 252(13):4373–4380

    Article  Google Scholar 

  22. Ali N, Bashir S, Kalsoom U-I, Akram M, Mahmood K (2013) “Effect of dry and wet ambient environment on the pulsed laser ablation of titanium,”. Appl Surf Sci 270:49–57

    Article  Google Scholar 

  23. Patel DN, Singh RP, Thareja RK (2014) Craters and nanostructures with laser ablation of metal/metal alloy in air and liquid. Appl Surf Sci 288:550–557

    Article  Google Scholar 

  24. Tangwarodomnukun V, Likhitangsuwat P, Tevinpibanphan O, Dumkum C (2015) Laser ablation of titanium alloy under a thin and flowing water layer. Int J Mach Tools Manuf 89:14–28

    Article  Google Scholar 

  25. Beer N, Özkaya E, Biermann D (2014) Drilling of Inconel 718 with geometry-modified twist drills. Proc CIRP 24:49–55

    Article  Google Scholar 

  26. Woon KS, Chaudhari A, Kumar AS, Rahman M (2014) The effects of tool degradation on hole straightness in deep hole gundrilling of Inconel-718. Proc CIRP 14:593–598

    Article  Google Scholar 

  27. Klocke F, Zeis M, Klink A, Veselovac D (2013) Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium- and nickel-based blisks. CIRP J Manuf Sci Technol 6(3):198–203

    Article  Google Scholar 

  28. Aramcharoen A, Mativenga PT, Yang S, Cooke KE, Teer DG (2008) Evaluation and selection of hard coatings for micro milling of hardened tool steel. Int J Mach Tools Manuf 48(14):1578–1584

    Article  Google Scholar 

  29. Sharman ARC, Hughes JI, Ridgway K (2006) An analysis of the residual stresses generated in Inconel 718TM when turning. J Mater Process Technol 173(3):359–367

    Article  Google Scholar 

  30. Madariaga A, Esnaola JA, Fernandez E, Arrazola PJ, Garay A, Morel F (2014) Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. Int J Adv Manuf Technol 71(9–12):1587–1598

    Article  Google Scholar 

  31. Venkatesan K, Ramanujam R, Kuppan P (2014) Laser assisted machining of difficult to cut materials: research opportunities and future directions - a comprehensive review. Proc Eng 97:1626–1636

    Article  Google Scholar 

  32. Manohar M, Selvaraj T, Sivakumar D, Gopinath S, George KM (2014) Experimental study to assess the effect of electrode bottom profiles while machining Inconel 718 through EDM process. Proc Mat Sci 6:92–104

    Article  Google Scholar 

  33. Garcí;a Navas V, Arriola I, Gonzalo O, Leunda J (2013) Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int J Mach Tools Manuf 74:19–28

    Article  Google Scholar 

  34. Klocke F, Welling D, Klink A, Veselovac D, Nöthe T, Perez R (2014) Evaluation of advanced wire-EDM capabilities for the manufacture of fir tree slots in Inconel 718. Proc CIRP 14:430–435

    Article  Google Scholar 

  35. Escobar-Palafox GA, Gault RS, Ridgway K (2012) Characterisation of abrasive water-jet process for pocket milling in Inconel 718. Proc CIRP 1:404–408

    Article  Google Scholar 

  36. Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Proc CIRP 6:13–26

    Article  Google Scholar 

  37. Venkatesan K, Ramanujam R, Kuppan P (2014) Analysis of cutting forces and temperature in laser assisted machining of Inconel 718 using Taguchi method. Proc Eng 97:1637–1646

    Article  Google Scholar 

  38. Attia H, Tavakoli S, Vargas R, Thomson V (2010) Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann Manuf Technol 59(1):83–88

    Article  Google Scholar 

  39. Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172

    Article  Google Scholar 

  40. Leshock CE, Kim J-N, Shin YC (2001) Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int J Mach Tools Manuf 41(6):877–897

    Article  Google Scholar 

  41. Abdul Aleem BJ, Hashmi MSJ, Yilbas BS (2011) Laser controlled melting of pre-prepared inconel 718 alloy surface. Opt Lasers Eng 49(11):1314–1319

    Article  Google Scholar 

  42. Yilbas BS, Akhtar SS, Karatas C (2010) Laser surface treatment of Inconel 718 alloy: thermal stress analysis. Opt Lasers Eng 48(7–8):740–749

    Article  Google Scholar 

  43. N. Ahmed, S. Darwish, A. M. Alahmari, and M. A. Shar, “Micro-channels by Nd:YAG laser beam machining: fabrication, microstructures, and micro-hardness profiles,” Int J Adv Manuf Technol, pp. 1–14, May 2015

  44. D. Mori Seiki, “DMG Middle East FZE, Jebel Ali Free Zone, JAFZA Towers, Lob 18, Office 2403, P.O Box, Dubai, U.A.E.” [Online]. Available: http://www.dmgmoriseiki.com/

  45. H. Instruments, “Hanna Instruments, Rhode Island, 584 Park East Drive Woonsocket, RI 02895.” [Online]. Available: http://www.hannainst.com/usa/

  46. Yan Y, Li L, Sezer K, Wang W, Whitehead D, Ji L, Bao Y, Jiang Y (2011) CO2 laser underwater machining of deep cavities in alumina. J Eur Ceram Soc 31(15):2793–2807

    Article  Google Scholar 

  47. Al-Mamun SA, Nakajima R, Ishigaki T (2012) Effect of liquid level and laser power on the formation of spherical alumina nanoparticles by nanosecond laser ablation of alumina target. Thin Solid Films 523:46–51

    Article  Google Scholar 

  48. Long Y, Shi T, Xiong L (2010) Excimer laser electrochemical etching n-Si in the KOH solution. Opt Lasers Eng 48(5):570–574

    Article  Google Scholar 

  49. Dowding C, Lawrence J (2010) Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining. Appl Surf Sci 256(12):3705–3713

    Article  Google Scholar 

  50. E. Machine tool manufacturer, “24/2 Nanded, Taluka: Haveli District:Pune, Maharashtra, INDIA 411041,” Electronica. [Online]. Available: http://www.electronicagroup.com/

  51. Yan Y, Li L, Sezer K, Wang W, Whitehead D, Ji L, Bao Y, Jiang Y (2011) CO2 laser underwater machining of deep cavities in alumina. J Eur Ceram Soc 31(15):2793–2807

    Article  Google Scholar 

  52. Choo KL, Ogawa Y, Kanbargi G, Otra V, Raff LM, Komanduri R (2004) Micromachining of silicon by short-pulse laser ablation in air and under water. Mater Sci Eng A 372(1–2):145–162

    Article  Google Scholar 

  53. Mullick S, Madhukar YK, Roy S, Kumar S, Shukla DK, Nath AK (2013) Development and parametric study of a water-jet assisted underwater laser cutting process. Int J Mach Tools Manuf 68:48–55

    Article  Google Scholar 

  54. “Metallography of Superalloys,” Vander Voort metallography, failure analysis & archeometallography consulting. [Online]. Available: http://www.georgevandervoort.com/metallography/general/nickel-alloys/20001279-metallography-of-superalloys.html. [Accessed: 24-Apr-2015]

  55. Ucun İ, Aslantas K, Bedir F (2015) The performance of DLC-coated and uncoated ultra-fine carbide tools in micromilling of Inconel 718. Precis Eng 41:135–144

    Article  Google Scholar 

  56. Ucun İ, Aslantas K, Bedir F (2013) An experimental investigation of the effect of coating material on tool wear in micro milling of Inconel 718 super alloy. Wear 300(1–2):8–19

    Article  Google Scholar 

  57. Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55(2):745–768

    Article  Google Scholar 

  58. Devillez A, Le Coz G, Dominiak S, Dudzinski D (2011) Dry machining of Inconel 718, workpiece surface integrity. J Mater Process Technol 211(10):1590–1598

    Article  Google Scholar 

  59. Choudhury IA, El-Baradie MA (1998) Machinability of nickel-base super alloys: a general review. J Mater Process Technol 77(1–3):278–284

    Article  Google Scholar 

  60. Beri N, Maheshwari S, Sharma C, Kumar A (2014) Surface quality modification using powder metallurgy processed CuW electrode during electric discharge machining of Inconel 718. Proc Mat Sci 5:2629–2634

    Article  Google Scholar 

  61. Li L, Wei XT, Li ZY (2014) Surface integrity evolution and machining efficiency analysis of W-EDM of nickel-based alloy. Appl Surf Sci 313:138–143

    Article  Google Scholar 

  62. Izquierdo B, Plaza S, Sánchez JA, Pombo I, Ortega N (2012) Numerical prediction of heat affected layer in the EDM of aeronautical alloys. Appl Surf Sci 259:780–790

    Article  Google Scholar 

  63. Ekmekci B (2007) Residual stresses and white layer in electric discharge machining (EDM). Appl Surf Sci 253(23):9234–9240

    Article  Google Scholar 

  64. Aspinwall DK, Soo SL, Berrisford AE, Walder G (2008) Workpiece surface roughness and integrity after WEDM of Ti–6Al–4V and Inconel 718 using minimum damage generator technology. CIRP Ann Manuf Technol 57(1):187–190

    Article  Google Scholar 

  65. Tsai HC, Yan BH, Huang FY (2003) EDM performance of Cr/Cu-based composite electrodes. Int J Mach Tools Manuf 43(3):245–252

    Article  Google Scholar 

  66. Wang C-C, Chow H-M, Yang L-D, Lu C-T (2009) Recast layer removal after electrical discharge machining via Taguchi analysis: a feasibility study. J Mater Process Technol 209(8):4134–4140

    Article  Google Scholar 

  67. Jeelani S, Collins MR (1988) Effect of electric discharge machining on the fatigue life of Inconel 718. Int J Fatigue 10(2):121–125

    Article  Google Scholar 

  68. LIN M, TSAO C, HSU C, CHIOU A, HUANG P, LIN Y (2013) Optimization of micro milling electrical discharge machining of Inconel 718 by Grey-Taguchi method. Trans Nonferrous Metals Soc China 23(3):661–666

    Article  Google Scholar 

  69. Huang CA, Chen YC, Chang JH (2008) The electrochemical polishing behavior of the Inconel 718 alloy in perchloric–acetic mixed acids. Corros Sci 50(2):480–489

    Article  Google Scholar 

  70. Klocke F, Zeis M, Herrig T, Harst S, Klink A (2014) Optical in situ measurements and interdisciplinary modeling of the electrochemical sinking process of Inconel 718. Proc CIRP 24:114–119

    Article  Google Scholar 

  71. Wang D, Zhu Z, Wang N, Zhu D, Wang H (2015) Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution. Electrochim Acta 156:301–307

    Article  Google Scholar 

  72. Çaydaş U, Hasçalık A (2008) A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J Mater Process Technol 202(1–3):574–582

    Article  Google Scholar 

  73. Axinte DA, Karpuschewski B, Kong MC, Beaucamp AT, Anwar S, Miller D, Petzel M (2014) High Energy Fluid Jet Machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications. CIRP Ann Manuf Technol 63(2):751–771

    Article  Google Scholar 

  74. Hashish M (1991) Optimization factors in abrasive-waterjet machining. J Manuf Sci Eng 113(1):29–37

    Article  Google Scholar 

  75. Sadasivam B, Hizal A, Park S, Arola D (2009) An evaluation of abrasive waterjet peening with elastic prestress. J Manuf Sci Eng 131(1):011010–011010

    Article  Google Scholar 

  76. Yünlü L, Çolak O, Kurbanoğlu C (2014) Taguchi DOE analysis of surface integrity for high pressure jet assisted machining of Inconel 718. Proc CIRP 13:333–338

    Article  Google Scholar 

  77. Hsu CY, Lin YY, Lee WS, Lo SP (2008) Machining characteristics of Inconel 718 using ultrasonic and high temperature-aided cutting. J Mater Process Technol 198(1–3):359–365

    Article  Google Scholar 

  78. Liao YS, Chen YC, Lin HM (2007) Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy. Int J Mach Tools Manuf 47(12–13):1988–1996

    Article  Google Scholar 

  79. Bhaduri D, Soo SL, Novovic D, Aspinwall DK, Harden P, Waterhouse C, Bohr S, Mathieson AC, Lucas M (2013) Ultrasonic assisted creep feed grinding of Inconel 718. Proc CIRP 6:615–620

    Article  Google Scholar 

  80. Mitrofanov AV, Ahmed N, Babitsky VI, Silberschmidt VV (2005) Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718. J Mater Process Technol 162–163:649–654

    Article  Google Scholar 

  81. Pusavec F, Hamdi H, Kopac J, Jawahir IS (2011) Surface integrity in cryogenic machining of nickel based alloy—Inconel 718. J Mater Process Technol 211(4):773–783

    Article  Google Scholar 

  82. Tam SC, Yeo CY, Jana S, Lau MWS, Lim LEN, Yang LJ, Noor YM (1993) Optimization of laser deep-hole drilling of Inconel 718 using the Taguchi method. J Mater Process Technol 37(1–4):741–757

    Article  Google Scholar 

  83. AHN D-G, BYUN K-W (2009) Influence of cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd:YAG laser. Trans Nonferrous Metals Soc China 19(1):s32–s39

    Article  Google Scholar 

  84. Hasçalık A, Ay M (2013) CO2 laser cut quality of Inconel 718 nickel – based superalloy. Optics Laser Technol 48:554–564

    Article  Google Scholar 

  85. Weber R, Hafner M, Michalowski A, Graf T (2011) Minimum damage in CFRP laser processing. Phys Procedia 12(Part B):302–307

    Article  Google Scholar 

  86. Mahdieh MH, Nikbakht M, Eghlimi Moghadam Z, Sobhani M (2010) Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water. Appl Surf Sci 256(6):1778–1783

    Article  Google Scholar 

  87. Perry TL, Werschmoeller D, Li X, Pfefferkorn FE, Duffie NA (2009) Pulsed laser polishing of micro-milled Ti6Al4V samples. J Manuf Process 11(2):74–81

    Article  Google Scholar 

  88. Lee SW, Shin HS, Chu CN (2013) Fabrication of micro-pin array with high aspect ratio on stainless steel using nanosecond laser beam machining. Appl Surf Sci 264:653–663

    Article  Google Scholar 

  89. Dai Y-T, Xu G, Tong X-L (2012) Deep UV laser etching of GaN epilayers grown on sapphire substrate. J Mater Process Technol 212(2):492–496

    Article  Google Scholar 

  90. Cicală E, Soveja A, Sallamand P, Grevey D, Jouvard JM (2008) The application of the random balance method in laser machining of metals. J Mater Process Technol 196(1–3):393–401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darwish, S., Ahmed, N., Alahmari, A.M. et al. A comparison of laser beam machining of micro-channels under dry and wet mediums. Int J Adv Manuf Technol 83, 1539–1555 (2016). https://doi.org/10.1007/s00170-015-7658-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7658-1

Keywords

Navigation