Skip to main content
Log in

Topography and microstructure of the cutting surface machined with abrasive waterjet

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Abrasive waterjet (AWJ) technology has been widely used for cutting materials in precision machining. The present paper reports the surface topography and microstructure of the cutting surfaces machined by AWJ. Four different kinds of ductile metallic materials were used for preparation of specimens. With the AWJ processing technique, smooth surfaces were easily obtained with a lower surface roughness about 2 to 3 μm. By comparing the microhardness of the specimens with the control surface sample obtained by wire electrodischarge machining, it is found that there is no heat-affected zone on the cutting surfaces machined by AWJ. By observing the surface morphology and microstructure, the features of friction and wear marks are revealed. The results show that a smooth cutting surface is more easily obtained on hard materials, while erosions on soft material surfaces are more serious. All scratches have a clear consistent direction, under the action of mechanical abrasive wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henning A, Liu HT, Olsen C (2012) Economic and technical efficiency of high performance abrasive waterjet cutting. J Press Vessel Technol 134:p021405. doi:10.1115/1.4004800

    Article  Google Scholar 

  2. Folkes J (2009) Waterjet—an innovative tool for manufacturing. J Mater Process Technol 209:6181–6189. doi:10.1016/j.jmatprotec.2009.05.025

    Article  Google Scholar 

  3. Kovacevic R, Hashishi M, Mohan R, Ramulu M, Kim TJ, Geskin ES (1997) State of the art of research and development in abrasive waterjet machining. J Manuf Sci Eng 119:776–785

    Article  Google Scholar 

  4. Liu HT (2010) Waterjet technology for machining fine features pertaining to micromachining. J Manuf Process 12:8–18

    Article  Google Scholar 

  5. Miller DS (2004) Micromachining with abrasive waterjets. J Mater Process Technol 149:37–42. doi:10.1016/j.jmatprotec.2004.02.041

    Article  Google Scholar 

  6. Kök M, Kanca E, Eyercioğlu Ö (2011) Prediction of surface roughness in abrasive waterjet machining of particle reinforced MMCs using genetic expression programming. Int J Adv Manuf Technol 55:955–968. doi:10.1007/s00170-010-3122-4

    Article  Google Scholar 

  7. Hloch S, Valíček J (2012) Topographical anomaly on surfaces created by abrasive waterjet. Int J Adv Manuf Technol 59:593–604. doi:10.1007/s00170-011-3511-3

    Article  Google Scholar 

  8. Momber AW, Kovacevic R (1998) Principles of abrasive water jet machining. Springer, London

    Book  MATH  Google Scholar 

  9. Hashish M (1988) Visualization of the abrasive-waterjet cutting process. Exp Mech 28:159–169

    Article  Google Scholar 

  10. Orbanic H, Junkar M (2008) Analysis of striation formation mechanism in abrasive water jet cutting. Wear 265:821–830. doi:10.1016/j.wear.2008.01.018

    Article  Google Scholar 

  11. Hashish M (1991) Characteristics of surfaces machined with abrasive-waterjets. J Eng Mater Technol 113:354–362

    Article  Google Scholar 

  12. Shanmugam DK, Masood SH (2009) An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. J Mater Process Technol 209:3887–3893. doi:10.1016/j.jmatprotec.2008.09.001

    Article  Google Scholar 

  13. Azmir MA, Ahsan AK, Rahmah A (2009) Effect of abrasive water jet machining parameterson aramid fibre reinforced plastics composite. Int J Mater Form 2:37–44. doi:10.1007/s12289-008-0388-2

    Article  Google Scholar 

  14. Hascalik A, Caydas U, Gurun H (2007) Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy. Mater Des 28:1953–1957. doi:10.1016/j.matdes.2006.04.020

    Article  Google Scholar 

  15. Zhu HT, Huang CZ, Wang J, Li QL, Che CL (2009) Experimental study on abrasive waterjet polishing for hard–brittle materials. Int J Mach Tools Manuf 49:569–578

    Article  Google Scholar 

  16. Boud F, Carpenter C, Folkes J, Shipway PH (2010) Abrasive waterjet cutting of a titanium alloy: the influence of abrasivemorphology and mechanical properties on workpiece grit embedment and cut quality. J Mater Process Technol 210:2197–2205. doi:10.1016/j.jmatprotec.2010.08.006

    Article  Google Scholar 

  17. Khan AA, Haque MM (2007) Performance of different abrasive materials during abrasive water jet machining of glass. J Mater Process Technol 191:404–407. doi:10.1016/j.jmatprotec.2007.03.071

    Article  Google Scholar 

  18. Babu MK, Chetty OVK (2006) A study on the use of single mesh size abrasives in abrasive waterjet machining. Int J Adv Manuf Technol 29:532–540. doi:10.1007/s00170-005-2536-x

    Article  Google Scholar 

  19. Parikh PJ, Lam SS (2009) Parameter estimation for abrasive waterjet machining process using neural networks. Int J Adv Manuf Technol 40:497–502. doi:10.1007/s00170-007-1363-7

    Article  Google Scholar 

  20. Garg RK, Singh KK, Sachdeva A, Sharma VS, Ojha K (2010) Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int J Adv Manuf Technol 50:611–624. doi:10.1007/s00170-010-2534-5

    Article  Google Scholar 

  21. Zhang D (2010) Research on the surface quality of turbine blade 1Cr13 by WEDM. Dissertation, Qingdao University of Science & Technology

  22. Ansari AL, Ohadi MM, Hashish M (1992) Thermal energy distributions in the work piece during cutting with an abrasive waterjet. J Eng Ind 114:67–73

    Google Scholar 

  23. Lebar A, Junkar M, Poredoš A, Cvjeticanin M (2010) Method for online quality monitoring of AWJ cutting by infrared thermography. CIRP J Manuf Sci Technol 2:170–175. doi:10.1016/j.cirpj.2010.03.004

    Article  Google Scholar 

  24. Hlavac LM, Hlavacova IM, Jandacka P, Zegzulka J, Viliamsova J, Vasek J, Madr V (2010) Comminution of material particles by water jets—influence of the inner shape of the mixing chamber. Int J Miner Process 95:25–29. doi:10.1016/j.minpro.2010.03.003

    Article  Google Scholar 

  25. Hlavac LM, Hlavacova IM, Vasek J (2007) Milling of materials by water jets—acting of liquid jet in the cutting head. Trans VŠB—Tech Univ Ostrav Mech Ser 1:73–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuwen Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Guo, C. Topography and microstructure of the cutting surface machined with abrasive waterjet. Int J Adv Manuf Technol 73, 941–947 (2014). https://doi.org/10.1007/s00170-014-5869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5869-5

Keywords

Navigation