Skip to main content
Log in

Problems and solutions in machining of titanium alloys

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Titanium alloys are known as difficult-to-machine materials. The problems of machining titanium are many folds which depend on types of titanium alloys. This paper investigates the underlying mechanisms of basic challenges, such as variation of chip thickness, high heat stress, high pressure loads, springback, and residual stress based on the available literature. These are responsible for higher tool wear and worse machined surface integrity. In addition, many cutting tool materials are inapt for machining titanium alloys as those materials are chemically reactive to titanium alloys under machining conditions. To address these problems, latest techniques such as application of high pressure coolant, cryogenic cooling, tap testing, thermally enhanced machining, hybrid machining, and use of high conductive cutting tool and tool holder have also been discussed and correlated. It seems that all the solutions are not yet well accepted in the industrial domain; further advancement in those fields are required to reduce the machining cost of titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pramanik A, Islam MN, Basak A, Littlefair G (2013) Machining and tool wear mechanisms during machining titanium alloys. Adv Mater Res 651:338–343

    Article  Google Scholar 

  2. Chichili DR, Ramesh KT, Hemker KJ (1998) The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling. Acta Mater 46:1025

    Article  Google Scholar 

  3. Ramesh KT (2002) Effects of high rates of loading on the deformation behavior and failure mechanisms of hexagonal close-packed metals and alloys. Metall Mater Trans 33 A:927–935

    Google Scholar 

  4. Follansbee P, Gray GT (1989) An analysis of the low temperature, low and high strain-rate deformation of Ti-6Al-4V. Metall Trans A 20:863–874

    Article  Google Scholar 

  5. Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68:262–274

    Article  Google Scholar 

  6. Ezugwu EO, Bonney J, Yamane Y (2003) An overview of machinability of aeroengine alloys. J Mat Process Technol 134:233–253

    Article  Google Scholar 

  7. Vyas A, Shaw MC (1999) Mechanics of saw-tooth chip formation in metal cutting. J Manuf Sci Eng Trans ASME 211:163–172

    Article  Google Scholar 

  8. Obikawa T, Usui E (1996) J Manuf Sci Eng Trans ASME 118:208

    Article  Google Scholar 

  9. Ginting A, Nouari M (2006) Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material. Int J Mach Tools Manuf 46:758–768

    Article  Google Scholar 

  10. Barry J, Byrne G, Lennon D (2001) Observations on chip formation and acoustic emission in machining Ti–6Al–4V alloy. Int J Mach Tools Manuf 41:1055–1070

    Article  Google Scholar 

  11. Komanduri R, Von Turkovich BF (1981) New observations on the mechanism of chip formation when machining titanium alloys. Wear 69(2):179–188

    Article  Google Scholar 

  12. Takeyama H, Murakoshi A, Motonishi S, Narutaki N (1983) Study on machining of titanium alloys. Ann CIRP 32(1):65–69

    Article  Google Scholar 

  13. Nabhani F (2001) Robot Comput Integr Manuf 17:99

    Article  Google Scholar 

  14. Rahman M, Wang ZG, Wong YS (2006) A review on high-speed machining of titanium alloys. JSME Int J Ser C 49(1):11

    Article  Google Scholar 

  15. Hirosaki K, Shintani K et al (2004) JSME Int J Ser C 47(1):14

    Article  Google Scholar 

  16. Jawaid A, Sharif S, Koksal S (2000) J Mater Process Technol 99:266

    Article  Google Scholar 

  17. Settineri L, Faga MG (2008) Nanostructured cutting tools coatings for machining titanium. Mach Sci Technol 12:158

    Article  Google Scholar 

  18. Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: Effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tool Manuf 48:1613–1625

    Article  Google Scholar 

  19. Komanduri R (1982) Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76:15–34

    Article  Google Scholar 

  20. Sharma S, Dograb M, Suri NM (2009) Cooling techniques for improved productivity in turning. Int J Mach Tool Manuf 49:435–453

    Article  Google Scholar 

  21. Boothroyd G, Knight WA (2005) Fundamentals of machining and machine tools, 3rd edn. New York, CRC

    Google Scholar 

  22. Zhao H, Barber GC, Zou Q (2002) A study of flank wear in orthogonal cutting with internal cooling. Wear 253:957–962

    Article  Google Scholar 

  23. Childs THC, Maekawa K, Obikawa T, Yamane Y (2001) Metal machining theory and applications. Butterworth Heinemann, Oxford

    Google Scholar 

  24. Hartung PD, Kramer BM, von Turkovich BF (1982) Tool wear in titanium machining. Ann ClRP 31(1)

  25. Trent EM, Wright PK (2000) Metal cutting, 4th edn. Butterworth Heinemann, Oxford

    Google Scholar 

  26. Barrow G (1973) A review of experimental and theoretical techniques for assessing cutting temperatures. Annals of the CIRP 22(2):203–211

    Google Scholar 

  27. Ying-lin H-y, Gang L, Ming Z (2009) Use of nitrogen gas in high-speed milling of Ti-6Al-4V. Trans Nonferrous Met Soc China 19:530–534

    Article  Google Scholar 

  28. Palanisamy S, McDonald D, Dargusch S (2009) Effects of coolant pressure on chip formation while turning Ti6Al4V alloy. Int J Mach Tool Manuf 49:739–743

    Article  Google Scholar 

  29. Ezugwu EO (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45(12–13):1353–1367

    Article  Google Scholar 

  30. Ezugwu EO, Bonney J, Da Silva RB, Cakir O (2007) Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies. Int J Mach Tools Manuf 47(6):884–891

    Article  Google Scholar 

  31. Machado AR, Wallbank J, Ezugwu EO, Pashby IR (1998) Tool performance and chip control when machining Ti–6Al–4V and Inconel 901 using high pressure coolant supply. Mach Sci Technol 2:1–12

    Article  Google Scholar 

  32. Sorby K, Tonnessen K (2006) High-pressure cooling of face-grooving operations in Ti6Al4V. Proc Mech Eng B J Eng Manuf 220:1621–1627

    Article  Google Scholar 

  33. Vosough M, Svenningsson I (2004) Influence of high pressure water-jet assisted machining on surface residual stresses on the work-piece of Ti–6Al–4V alloy. In: Proceeding of SPIE, SPIE, Singapore, Bellingham

  34. Venugopal KA, Paul S, Chattopadhyay AB (2007) Tool wear in cryogenic turning of Ti-6Al-4V alloy. Cryogenics 47:12–18

    Article  Google Scholar 

  35. Fan Y, Zheng M, Zhang D, Yang S, Cheng M (2011) Static and dynamic characteristic of cutting forces when high efficiency cutting Ti-6Al-4V. Adv Mat Res 305:122–128

    Article  Google Scholar 

  36. Schmitz TL, Smith KS (2008) Machining dynamics—frequency response to improve productivity. Springer, Dordrecht

    Google Scholar 

  37. Leigh EP, Schueller JK, Tlusty J, Smith S (2000) Advanced machining techniques on titanium rotor parts. Presented at the American Helicopter Society 56th Annual Forum, Virginia Beach

  38. Lennon AM, Ramesh KT (2004) The influence of crystal structure on the dynamic behavior of materials at high temperatures. Int J Plast 20:269–290

    Article  MATH  Google Scholar 

  39. Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining. Int J Mach Tools Manuf 50(6):174–182

    Article  Google Scholar 

  40. Sun S, Brandt M, Dargusch MS (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49:561–568

    Article  Google Scholar 

  41. Komanduri R, Hou ZB (2002) On the thermoplastic shear instability in the machining of atitanium alloy (Ti–6Al–4V). Metall Mater Trans 33A:2995–3010

    Article  Google Scholar 

  42. Abele E, Fröhlich B (2008) High speed milling of titanium alloys. Adv Prod Eng Manag 3:131–140

    Google Scholar 

  43. Shaw MC (1984) Metal cutting principles. Clarendon, Oxford

    Google Scholar 

  44. Kitagawa T, Kubo A, Maekawa K (1997) Temperature and wear of cutting tools in high-speed machining of Incone1718 and Ti-6A1-6V-2Sn. Wear 202:142–148

    Article  Google Scholar 

  45. Ginting A, Nouari M (2006) Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material. Int J Mach Tool Manuf 46:758–768

    Article  Google Scholar 

  46. Campbell FC (2006) Manufacturing technology for aerospace structural materials, 1st edn. Elsevier, New York

    Google Scholar 

  47. Sutter G, Faure L, Molinari A, Ranc N, Pina V (2003) An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining. Int J Mach Tool Manuf 43:671–678

    Article  Google Scholar 

  48. Kikuchi M (2009) The use of cutting temperature to evaluate the machinability of titanium alloys. Acta Biomater 5:770–775

    Article  Google Scholar 

  49. Jawaid A, Che-haron CH, Abdullah A (1999) Tool wear characteristics in turing of titanium alloy Ti-6246. J Mater Process Technol 92–93:329–334

    Article  Google Scholar 

  50. Friedrich CR, Kulkarni VP (2004) Effect of workpiece springback on micromilling forces. Microsyst Technol 10:472–477

    Article  Google Scholar 

  51. Machai C, Biermann D (2011) Machining of β-titanium-alloy Ti–10V–2Fe–3Al under cryogenic conditions: cooling with carbon dioxide snow. J Mater Process Technol 211:1175–1183

    Article  Google Scholar 

  52. Rashid RAR, Sun S, Wang G, Dargusch MS (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4 Al beta titaniumalloy. Int J Mach Tool Manuf 63:58–69

    Article  Google Scholar 

  53. Rashid RAR, Bermingham MJ, Sun S, Wang G, Dargusch MS (2012) The response of the high strength Ti–10V–2Fe–3Al beta titanium alloy to laser assisted cutting. Precis Eng. doi:10.1016/j.precisioneng. 2012.12. 002

    Google Scholar 

  54. Honghua SU, Peng LIU, Yucan FU, Jiuhua XU (2012) Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools. Chin J Aeronaut 25:784–790

    Article  Google Scholar 

  55. Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, Maître FL (2009) Machinability of titanium alloys (Ti6Al4V and Ti555.3). J Mater Process Technol 209:2223–2230

    Article  Google Scholar 

  56. Aspinwall DK, Dewes RC, Mantle AR (2005) The machining of γ-TiAl intermetallic alloys. Annals of the CIRP 54(1):99–104

    Article  Google Scholar 

  57. Klocke F, Settineri L, Lung D, Priarone PC, Arft M (2012) High performance cutting of gamma titanium aluminides: influence of lubricoolant strategy on tool wear and surface integrity. Wear. doi:10.1016/j.wear.2012.12. 035

    Google Scholar 

  58. Hood R, Lechner F, Aspinwall DK, Voice W (2007) Creep feed grinding of gamma titanium aluminide and burn resistant titanium alloys using SiC abrasive. Int J Mach Tool Manuf 47:1486–1492

    Article  Google Scholar 

  59. Soo SL, Hood R, Lannette M, Aspinwall DK, Voice WE (2011) Creep feed grinding of burn-resistant titanium (BuRTi) using superabrasive wheels. Int J Adv Manuf Technol 53:1019–1026

    Article  Google Scholar 

  60. Ding H, Shen N, Shin YC (2012) Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys. J Mater Process Technol 212:601–613

    Article  Google Scholar 

  61. Rashid RAR, Sun S, Wang G, Dargusch MS (2012) The effect of laser power on the machinability of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy during laser assisted machining. Int J Mach Tool Manuf 63:41–43

    Article  Google Scholar 

  62. Sun S, Brandt M, Dargusch MS (2010) Thermally enhanced machining of hard-to-machine materials—a review. Int J Mach Tool Manuf 50:663–680

    Article  Google Scholar 

  63. Nandy AK, Gowrishankar MC, Paul S (2009) Some studies on high-pressure cooling in turning of Ti–6Al–4V. Int J Mach Tools Manuf 49(2):182–198

    Article  Google Scholar 

  64. Hong SY, Ding Y (2001) Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. Int J Mach Tool Manuf 41:1417–1437

    Article  Google Scholar 

  65. Hong SY, Markus I, Jeong W (2001) New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. Int J Mach Tool Manuf 41:2245–2260

    Article  Google Scholar 

  66. Bermingham MJ, Palanisamy S, Kent D, Dargusch MS (2012) A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti–6Al–4V cutting. J Mater Process Technol 212:752–765

    Article  Google Scholar 

  67. Perez RGV (2005) Wear mechanisms of WC inserts in face milling of gamma titanium aluminides. Wear 259:1160–1167

    Article  Google Scholar 

  68. Lauwers B (2011) Surface integrity in hybrid machining processes. Proc Eng 19:241–251

    Article  Google Scholar 

  69. Rajurkar KP, Zhu D, McGeough JA, Kozak J, De Silva A (1999) New developments in ECM. CIRP Ann Manuf Technol 48(2):567–579

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pramanik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pramanik, A. Problems and solutions in machining of titanium alloys. Int J Adv Manuf Technol 70, 919–928 (2014). https://doi.org/10.1007/s00170-013-5326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5326-x

Keywords

Navigation