Skip to main content
Log in

Design and analysis of flexure-hinge parameter in microgripper

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the precision engineering field, a large number of applications require precise and microlevel manipulations, and microgrippers are an essential device to achieve precise manipulations. Highly precise movements are, in general, hard to achieve using conventional joints due to manufacturing error and backlash. In this paper, a new two-dimensional, compliant, monolithic piezo-actuated microgripper using flexure hinges is reported. The microgripper is designed, and a comparison study on stress and displacement is done by varying the hinge parameters such as the hinge radius, web thickness, position of flexure hinge, and radius of curvature of hinges. Kinematics of the microgripper is analyzed based on input/output displacement for all the above hinge design variations using FEM, and a kinematic model is arrived at based on the hinge location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monkman GJ, Hesse S, Steinmann R, Schunk H (2007) Robot Grippers. Wiley, Weinheim

    Google Scholar 

  2. Rabenorosoa K, Haddab Y, Lutz P (2008) In: Ratchev S, Koelemeijer S (Eds.) IFIP International Federation for Information Processing, 260, Micro-Assembly Technologies and Applications. Springer, Boston, pp 235–242

  3. Lobontiu N (2003) Compliant mechanisms design of flexure hinges. CRC, Boca Raton

    Google Scholar 

  4. Park SR, Yang SH (2005) A mathematical approach for analyzing ultra precision positioning system with compliant mechanism. J Mater Process Technol 164–165:1584–1589

    Article  Google Scholar 

  5. Lee SH, Lee KC, Lee SS, Oh HS (2003) Fabrication of an electrothermally actuated electrostatic microgripper. In: The 12th International Conference on Solid-State Sensors, Actuators and Microsystems, vol. 1, Boston, June, pp 552–555

  6. Chan HY, Li WJ (2003) A thermally actuated polymer micro robotic gripper for manipulation of biological cells. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, Taipei, September, 2003, pp 288–293

  7. Pan CS, Hsu WY (1996) An electro-thermally and laterally driven polysilicon microactuator. J Micromech Microeng 7:7–13

    Article  Google Scholar 

  8. Chu PB, Pister KSJ (1994) Analysis of closed-loop control of parallel-plate electrostatic microgrippers. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, San Diego, USA, May, pp 820–825

  9. Volland BE, Heerlein H, Rangelow IW (2002) Electrostatically driven microgripper. Microelectr Eng 61–62:1015–1023

    Article  Google Scholar 

  10. Kim CJ, Pisano AP, Muller RS (1991) Overhung electrostatic microgripper, Digest of Technical Papers, TRANSDUCERS’91. In: International Conference on Solid-State Sensors and Actuators, San Francisco, USA, June, pp. 610–613

  11. Kim CJ, Pisano AP, Muller RS (1992) Silicon-processed overhanging microgripper. J Microelectromech Syst 1(1):31–36

    Article  Google Scholar 

  12. Kim CJ, Pisano AP, Muller RS, Lim MG (1990) Polysilicon microgripper. In: 4th Technical Digest of Solid-State Sensor and ActuatorWorkshop, IEEE, Hilton Head Island, USA, June, pp 48–51

  13. Boggild P, Hansen TM, Molhave K, Hyldgrad A, Jensen MO, Richter J, Montelius L, Grey F (2001) Customizable nanotweezers for manipulation of freestanding nanostructures. In: Proceedings of the 2001 IEEE Conference on Nanotechnology, Maui, USA, October, pp. 87–92

  14. Haddab Y, Challet N, Bourjault A (2000) A microgripper using smart piezoelectric actuators. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, Takamatsu, Japan, November, pp. 659–664

  15. Carrozza MC, Menciassi A, Tiezzi G, Dario P (1997) The development of a LIGA-microfabricated gripper for micromanipulation tasks. J Micromech Microeng 8:141–143

    Article  Google Scholar 

  16. Nah SK, Zhong ZW (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators A 133:218–224

    Article  Google Scholar 

  17. Goldfarb M, Celanovic N (1998) A flexure-based gripper for small-scale manipulation. Robotica 17:181–187

    Article  Google Scholar 

  18. Mohd Zubir MN, Shirinzadeh B (2009) Development of a high precision flexure-based microgripper. Precis Eng 33:362–370

    Article  Google Scholar 

  19. Ren H, Gerhard E (1997) Design and fabrication of a current-pulse-excited bistable magnetic microactuator. Sens Actuators A Phys 58(3):259–264

    Article  Google Scholar 

  20. Zhong ZW, Yeong CK (2006) Development of a gripper using SMA wire. Sens Actuators A Phys 126(2):375–381

    Article  Google Scholar 

  21. Lee AP, Ciarlo DR, Krulevitch PA, Lehew S, Trevino J, Northrup MA (1995) A practical microgripper by fine alignment, eutectic bonding and SMA actuation. In: The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, pp 368–371

  22. Kohl M, Just E, Pfleging W, Miyazaki S (2000) SMA microgripper with integrated antagonism. Sens Actuators A Phys 83(1–3):208–213

    Article  Google Scholar 

  23. Her I, Chang JC (1994) A linear scheme for the displacement analysis of micropositioning stages with flexure hinges. ASME J Mech Des 116:770–776

    Article  Google Scholar 

  24. Paros LM, Weisbord L (1965) How to design flexure hinges. Mach Des 37:151–156

    Google Scholar 

  25. Smith S, Chetwynd D, Bowen D (1987) Design and assessment of monolithic high precision translation mechanisms. J Phys E 20:977–983

    Article  Google Scholar 

  26. Lobontiu N, Paine J, Garcia E, Goldfarb M (2002) Design of symmetric conic section flexure hinges based on closed-form compliance equations. Mech Mach Theory 37:477–498

    Article  MATH  Google Scholar 

  27. Yong YK, Tien-Fu Lu, Handley DC (2008) Review of circular flexure hinge design equations and derivation of empirical formulations. Prec Eng 32(2008):63–70

    Article  Google Scholar 

  28. Chena G, Howell LL (2008) Two general solutions of torsional compliance for variable rectangular cross-section hinges in compliant mechanisms. Prec Engg 33(3):268–274

    Article  Google Scholar 

  29. Smith ST (2000) Flexures: elements of elastic mechanisms. Gordon and Breach, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Senthil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavendra, M.R.A., Kumar, A.S. & Jagdish, B.N. Design and analysis of flexure-hinge parameter in microgripper. Int J Adv Manuf Technol 49, 1185–1193 (2010). https://doi.org/10.1007/s00170-009-2478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-009-2478-9

Keywords

Navigation