Skip to main content
Log in

Interference screws are more likely to perform better than cortical button and cross-pin fixation for hamstring autograft in ACL reconstruction: a Bayesian network meta-analysis

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Anterior cruciate ligament (ACL) reconstruction is widely accepted as the first choice of treatment for ACL injury, but there is disagreement in the literature regarding the optimal femoral fixation method. This meta-analysis assesses the evidence surrounding three common femoral fixation methods: cortical button (CB), cross-pin (CP) and interference screws (IS).

Methods

A systematic search was conducted in Medline, EMBASE and the Cochrane Library to identify studies with evidence level I or II that compared at least two femoral fixation methods with hamstring autograft for ACL reconstruction. Ten primary outcomes were collected. Risk of bias was assessed following the Cochrane Handbook for Systematic Reviews of Interventions. Standardized mean differences (SMD) were estimated using random-effects network meta-analysis in a Bayesian framework. Probability of ranking best (ProBest) and surface under the cumulative ranking curve (SUCRA) were used to rank all treatments. Funnel plots were used to identify publication bias and small-study effects.

Results

Sixteen clinical trials were included for analysis out of 2536 retrieved studies. Bayesian network meta-analysis showed no significant differences among the three fixation methods for the ten primary outcome measures. Based on the 10 outcome measures, the IS, CB and CP had the highest ProBest in 5, 5 and 0 outcomes, and the highest SUCRA values in 5, 4 and 1 outcomes, respectively. No substantial inconsistency between direct and indirect evidence, or publication bias was detected in the outcomes.

Conclusion

There were no statistical differences in performance among the CP, CB and IS femoral fixation methods with hamstring autograft in ACL reconstruction, although the IS was more likely to perform better than CB and CP based on the analysis of outcome measures from the included studies.

Level of evidence

1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmad CS, Gardner TR, Groh M, Arnouk J, Levine WN (2004) Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. Am J Sports Med 32:635–640

    PubMed  Google Scholar 

  2. Basad E, Kipper A, Wüsten O, Stürz H, Ishaque B (2010) Vergleichende Studie nach vorderer Hamstring-Kreuzbandplastik mit RigidFix® (Pinfixation) und EndoButton® (Ankerfixation). Z Orthop Unfall 148:276–281

    CAS  PubMed  Google Scholar 

  3. Baumfeld JA, Diduch DR, Rubino LJ, Hart JA, Miller MD, Barr MS et al (2008) Tunnel widening following anterior cruciate ligament reconstruction using hamstring autograft: a comparison between double cross-pin and suspensory graft fixation. Knee Surg Sports Traumatol Arthrosc 16:1108–1113

    PubMed  Google Scholar 

  4. Becker R, Voigt D, Starke C, Heymann M, Wilson GA, Nebelung W (2001) Biomechanical properties of quadruple tendon and patellar tendon femoral fixation techniques. Knee Surg Sports Traumatol Arthrosc 9:337–342

    CAS  PubMed  Google Scholar 

  5. Bjorkman P, Sandelin J, Harilainen A (2014) A randomized prospective controlled study with 5-year follow-up of cross-pin femoral fixation versus metal interference screw fixation in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23:2353–2359

    PubMed  Google Scholar 

  6. Browning WM 3rd, Kluczynski MA, Curatolo C, Marzo JM (2017) Suspensory versus aperture fixation of a quadrupled hamstring tendon autograft in anterior cruciate ligament reconstruction: a meta-analysis. Am J Sports Med 45:2418–2427

    PubMed  Google Scholar 

  7. Buelow JU, Siebold R, Ellermann A (2002) A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc 10:80–85

    PubMed  Google Scholar 

  8. Cannas A, Goletti D, Girardi E, Chiacchio T, Calvo L, Cuzzi G et al (2008) Mycobacterium tuberculosis DNA detection in soluble fraction of urine from pulmonary tuberculosis patients. Int J Tuberc Lung Dis 12:146–151

    CAS  PubMed  Google Scholar 

  9. Capuano L, Hardy P, Longo UG, Denaro V, Maffulli N (2008) No difference in clinical results between femoral transfixation and bio-interference screw fixation in hamstring tendon ACL reconstruction. A preliminary study. Knee 15:174–179

    PubMed  Google Scholar 

  10. Clark R, Olsen RE, Larson BJ, Goble EM, Farrer RP (1998) Cross-pin femoral fixation: a new technique for hamstring anterior cruciate ligament reconstruction of the knee. Arthroscopy 14:258–267

    CAS  PubMed  Google Scholar 

  11. Clatworthy MG, Annear P, Bulow JU, Bartlett RJ (1999) Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patella tendon grafts. Knee Surg Sports Traumatol Arthrosc 7:138–145

    CAS  PubMed  Google Scholar 

  12. Colvin A, Sharma C, Parides M, Glashow J (2011) What is the best femoral fixation of hamstring autografts in anterior cruciate ligament reconstruction?: a meta-analysis. Clin Orthop Relat Res 469:1075–1081

    PubMed  Google Scholar 

  13. Eajazi A, Madadi F, Madadi F, Boreiri M (2013) Comparison of different methods of femoral fixation anterior cruciate ligament reconstruction. Acta Med Iran 51:444–448

    PubMed  Google Scholar 

  14. Fauno P, Kaalund S (2005) Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: a prospective randomized study. Arthroscopy 21:1337–1341

    PubMed  Google Scholar 

  15. Feng J, Luo M, Ma J, Tian Y, Han X, Bai D (2019) The treatment modalities of masticatory muscle pain a network meta-analysis. Medicine (Baltimore) 98:e17934

    Google Scholar 

  16. Gabr A, O’Leary S, Spalding T, Bollen S, Haddad F (2015) The UK National Ligament Registry Report 2015. Knee 22:351–353

    PubMed  Google Scholar 

  17. Giurea M, Zorilla P, Amis AA, Aichroth P (1999) Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. Am J Sports Med 27:621–625

    CAS  PubMed  Google Scholar 

  18. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA (2016) Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med 50:804–808

    PubMed  PubMed Central  Google Scholar 

  19. Guo L, Yang L, Duan XJ, He R, Chen GX, Wang FY et al (2012) Anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft: comparison of autograft, fresh-frozen allograft, and gamma-irradiated allograft. Arthroscopy 28:211–217

    PubMed  Google Scholar 

  20. Hammer DL, Brown CH, Steiner ME et al (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549

    Google Scholar 

  21. Harilainen A, Sandelin J (2009) A prospective comparison of 3 hamstring acl fixation devices- Rigidfix, bioscrew, and intrafix- randomized into 4 groups with 2 years of follow-up. Am J Sports Med 37:699–706

    PubMed  Google Scholar 

  22. Harilainen A, Sandelin J, Jansson KA (2005) Cross-pin femoral fixation versus metal interference screw fixation in anterior cruciate ligament reconstruction with hamstring tendons: results of a controlled prospective randomized study with 2-year follow-up. Arthroscopy 21:25–33

    PubMed  Google Scholar 

  23. Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    PubMed  PubMed Central  Google Scholar 

  24. Hogervorst T, Howard RA, Thornton GM, Paulson K, Shrive NG, Ronsky JL et al (2002) A potential animal model for creating a controlled and reversible anterior cruciate ligament insufficiency. Knee 9:209–214

    PubMed  Google Scholar 

  25. Hoher J, Livesay GA, Ma CB, Withrow JD, Fu FH, Woo SL (1999) Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc 7:215–219

    CAS  PubMed  Google Scholar 

  26. Howell SM, Hull ML (1998) Aggressive rehabilitation using hamstring tendons: graft construct, tibial tunnel placement, fixation properties, and clinical outcome. Am J Knee Surg 11:120–127

    CAS  PubMed  Google Scholar 

  27. Hurley ET, Gianakos AL, Anil U, Strauss EJ, Gonzalez-Lomas G (2019) No difference in outcomes between femoral fixation methods with hamstring autograft in anterior cruciate ligament reconstruction—a network meta-analysis. Knee 26:292–301

    PubMed  Google Scholar 

  28. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C et al (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784

    PubMed  Google Scholar 

  29. Ibrahim SA, Abdul Ghafar S, Marwan Y, Mahgoub AM, Al Misfer A, Farouk H et al (2015) Intratunnel versus extratunnel autologous hamstring double-bundle graft for anterior cruciate ligament reconstruction: a comparison of 2 femoral fixation procedures. Am J Sports Med 43:161–168

    PubMed  Google Scholar 

  30. Ibrahim SA, Hamido F, Al Misfer AK, Mahgoob A, Ghafar SA, Alhran H (2009) Anterior cruciate ligament reconstruction using autologous hamstring double bundle graft compared with single bundle procedures. Journal of bone and joint surgery. J Bone Joint Surg Br 91:1310–1315

    CAS  PubMed  Google Scholar 

  31. Ilahi OA, Nolla JM, Ho DM (2009) Intra-tunnel fixation versus extra-tunnel fixation of hamstring anterior cruciate ligament reconstruction: a meta-analysis. J Knee Surg 22:120–129

    PubMed  Google Scholar 

  32. Ishibashi Y, Rudy TW, Livesay GA, Stone JD, Fu FH, Woo SL (1997) The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy 13:177–182

    CAS  PubMed  Google Scholar 

  33. Kousa P, Jarvinen TLN, Vihavainen M, Kannus P, Jarvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 31:182–188

    PubMed  Google Scholar 

  34. Kuskucu SM (2008) Comparison of short-term results of bone tunnel enlargement between EndoButton™ CL and cross-pin fixation systems after chronic anterior cruciate ligament reconstruction with autologous quadrupled hamstring tendons. J Int Med Res 36:23–30

    CAS  PubMed  Google Scholar 

  35. L’Insalata JC, Klatt B, Fu FH, Harner CD (1997) Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc 5:234–238

    PubMed  Google Scholar 

  36. Lehmann A-K, Osada N, Zantop T, Raschke MJ, Petersen W (2009) Femoral bridge stability in double-bundle ACL reconstruction: impact of bridge width and different fixation techniques on the structural properties of the graft/femur complex. Arch Orthop Trauma Surg 129:1127–1132

    PubMed  Google Scholar 

  37. Lind M, Menhert F, Pedersen AB (2009) The first results from the Danish ACL reconstruction registry: epidemiologic and 2 year follow-up results from 5,818 knee ligament reconstructions. Knee Surg Sports Traumatol Arthrosc 17:117–124

    PubMed  Google Scholar 

  38. Ma CB, Francis K, Towers J, Irrgang J, Fu FH, Harner CH (2003) Hamstring anterior cruciate ligament reconstruction: a comparison of bioabsorbable interference screw and endobutton-post fixation. Arthroscopy 20:

  39. Ma CB, Francis K, Towers J, Irrgang J, Fu FH, Harner CH (2004) Hamstring anterior cruciate ligament reconstruction: a comparison of bioabsorbable interference screw and endobutton-post fixation. Arthroscopy 20:122–128

    PubMed  Google Scholar 

  40. Magnussen RA, Granan LP, Dunn WR, Amendola A, Andrish JT, Brophy R et al (2010) Cross-cultural comparison of patients undergoing ACL reconstruction in the United States and Norway. Knee Surg Sports Traumatol Arthrosc 18:98–105

    PubMed  PubMed Central  Google Scholar 

  41. Mascarenhas R, Saltzman BM, Sayegh ET, Verma NN, Cole BJ, Bush-Joseph C et al (2015) Bioabsorbable versus metallic interference screws in anterior cruciate ligament reconstruction: a systematic review of overlapping meta-analyses. Arthroscopy 31:561–568

    PubMed  Google Scholar 

  42. Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C (2006) Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy 22:660–668

    PubMed  Google Scholar 

  43. Nebelung W, Becker R, Merkel M, Ropke M (1998) Bone tunnel enlargement after anterior cruciate ligament reconstruction with semitendinosus tendon using Endobutton fixation on the femoral side. Arthroscopy 14:810–815

    CAS  PubMed  Google Scholar 

  44. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2012) Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med 22:116–121

    PubMed  PubMed Central  Google Scholar 

  45. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2014) Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med 42:1567–1573

    PubMed  PubMed Central  Google Scholar 

  46. Price R, Stoney J, Brown G (2010) Prospective randomized comparison of endobutton versus cross-pin femoral fixation in hamstring anterior cruciate ligament reconstruction with 2-year follow-up. ANZ J Surg 80:162–165

    PubMed  Google Scholar 

  47. Rose T, Hepp P, Venus J, Stockmar C, Josten C, Lill H (2006) Prospective randomized clinical comparison of femoral transfixation versus bioscrew fixation in hamstring tendon ACL reconstruction—a preliminary report. Knee Surg Sports Traumatol Arthrosc 14:730–738

    PubMed  Google Scholar 

  48. Salanti G, Ades AE, Ioannidis JPA (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64:163–171

    PubMed  Google Scholar 

  49. Shen XZ, Qu F, Li CB, Qi W, Lu X, Li HL et al (2018) Comparison between a novel human cortical bone screw and bioabsorbable interference screw for graft fixation of ACL reconstruction. Eur Rev Med Pharmacol Sci 22:111–118

    PubMed  Google Scholar 

  50. Sim JA, Kwak JH, Yang SH, Lee BK (2009) Comparative biomechanical study of the Ligament Plate (R) and other fixation devices in ACL reconstruction. Int Orthop 33:1269–1274

    PubMed  Google Scholar 

  51. Srinivas DK, Kanthila M, Saya RP, Vidyasagar J (2016) Femoral and tibial tunnel widening following anterior cruciate ligament reconstruction using various modalities of fixation: a prospective observational study. J Clin Diagn Res 10:09–11

    Google Scholar 

  52. Stengel D, Casper D, Bauwens K, Ekkernkamp A, Wich M (2009) Bioresorbable pins and interference screws for fixation of hamstring tendon grafts in anterior cruciate ligament reconstruction surgery: a randomized controlled trial. Am J Sports Med 37:1692–1698

    PubMed  Google Scholar 

  53. To JT, Howell SM, Hull ML (1999) Contributions of femoral fixation methods to the stiffness of anterior cruciate ligament replacements at implantation. Arthroscopy 15:379–387

    CAS  PubMed  Google Scholar 

  54. Weimann A, Rodieck M, Zantop T, Hassenpflug J, Petersen W (2005) Primary stability of hamstring graft fixation with biodegradable suspension versus interference screws. Arthroscopy 21:266–274

    PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81802204), China Postdoctoral Science Foundation (2020M671453), Natural Science Foundation of Shanxi Province (201801D221117), Shanxi Medical University Second Affiliated Hospital Doctor’s Funds (2017-105, 201702-3), Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (2019L0410), and the Australian National Health and Medical Research Council (APP1120249).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhao or Bin Wang.

Ethics declarations

Conflict of interest

None declared.

Ethical approval

This study was carried out with ethical approval from the ethics committee of Shanxi Medical University (2018LL036).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Li, J.J., Zhu, Y. et al. Interference screws are more likely to perform better than cortical button and cross-pin fixation for hamstring autograft in ACL reconstruction: a Bayesian network meta-analysis. Knee Surg Sports Traumatol Arthrosc 29, 1850–1861 (2021). https://doi.org/10.1007/s00167-020-06231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-06231-x

Keywords

Navigation