Skip to main content
Log in

Clinical advantages of image-free navigation system using surface-based registration in anatomical anterior cruciate ligament reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To evaluate the clinical advantages of a navigation system developed with an emphasis on attaining an appropriate femoral tunnel length and posterior wall margin with no posterior wall blowout, as well as having accurate tunnel positioning, in anatomical anterior cruciate ligament reconstruction (ACLR).

Methods

Ten freshly frozen human knees were transected at mid-femur and mid-tibia. Each knee specimen underwent arthroscopic single-bundle anterior cruciate ligament reconstruction using the outside-in technique, with two knees by manual ACLR (control group) and another eight knees by only the navigational ACLR without arthroscopic assistance (experimental group). The position/orientation information of tunnel entry point, tunnel length, and posterior wall distance of pre-, intra-, and postoperative tunnel were recorded, and the reliability and errors among them were evaluated.

Results

From comparison of the 3D models for preoperative planning and postoperative reconstruction, the mean differences for navigational femoral tunnelling and arthroscopic-assisted femoral tunnelling were recorded, respectively: (1) tunnel entry position, 1.4 mm (SD 0.3) versus 4.9 mm; (2) tunnel length, 0.7 mm (SD 0.2), similar to 0.6 mm in arthroscopic-assisted femoral tunnelling, and (3) posterior wall distance, 0.5 mm (SD 0.2), much smaller than 4.7 mm for arthroscopic-assisted femoral tunnelling. The intraclass correlation coefficients, calculated to determine the accuracy and reliability of navigational femoral tunnelling, showed excellent internal consistency that ranged from 0.965 to 0.989 for tunnel length and from 0.810 to 0.953 for posterior wall distance.

Conclusion

Navigation systems with enhancement of the registration accuracy by the developed system are feasible in anatomical ACLR, in reducing surgical failures such as short tunnel length or posterior wall breakage of distal femur. The present study revealed that computer navigation could aid in avoiding major mistakes in exact positioning and posterior wall blowout and help in attaining appropriate length for femoral tunnelling in anatomical ACLR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aglietti P, Zaccherotti G, Menchetti PP, De Biase P (1995) A comparison of clinical and radiological parameters with two arthroscopic techniques for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 3:2–8

    Article  CAS  PubMed  Google Scholar 

  2. Angelini FJ, Albuquerque RF, Sasaki SU, Camanho GL, Hernandez AJ (2010) Comparative study on anterior cruciate ligament reconstruction: determination of isometric points with and without navigation. Clinics (Sao Paulo) 65:683–688

    Article  Google Scholar 

  3. Bedi A, Maak T, Musahl V, Citak M, O’Loughlin PF, Choi D, Pearle AD (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: is the tibial tunnel position most important? Am J Sports Med 39:366–373

    Article  PubMed  Google Scholar 

  4. Bedi A, Maak T, Musahl V, O’Loughlin P, Choi D, Citak M, Pearle AD (2011) Effect of tunnel position and graft size in single-bundle anterior cruciate ligament reconstruction: an evaluation of time-zero knee stability. Arthroscopy 27:1543–1551

    Article  PubMed  Google Scholar 

  5. Bjornsson H, Desai N, Musahl V, Alentorn-Geli E, Bhandari M, Fu F, Samuelsson K (2015) Is double-bundle anterior cruciate ligament reconstruction superior to single-bundle? A comprehensive systematic review. Knee Surg Sports Traumatol Arthrosc 23:696–739

    Article  PubMed  Google Scholar 

  6. Carson EW, Anisko EM, Restrepo C, Panariello RA, O’Brien SJ, Warren RF (2004) Revision anterior cruciate ligament reconstruction: etiology of failures and clinical results. J Knee Surg 17:127–132

    PubMed  Google Scholar 

  7. Debandi A, Maeyama A, Hoshino Y, Asai S, Goto B, Smolinski P, Fu FH (2013) The effect of tunnel placement on rotational stability after ACL reconstruction: evaluation with use of triaxial accelerometry in a porcine model. Knee Surg Sports Traumatol Arthrosc 21:589–595

    Article  PubMed  Google Scholar 

  8. Degenhart M (2004) Computer-navigated ACL reconstruction with the OrthoPilot. Surg Technol Int 12:245–251

    PubMed  Google Scholar 

  9. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23:1218–1225

    Article  PubMed  Google Scholar 

  10. Getelman MH, Friedman MJ (1999) Revision anterior cruciate ligament reconstruction surgery. J Am Acad Orthop Surg 7:189–198

    Article  CAS  PubMed  Google Scholar 

  11. Harner CD, Giffin JR, Dunteman RC, Annunziata CC, Friedman MJ (2001) Evaluation and treatment of recurrent instability after anterior cruciate ligament reconstruction. Instr Course Lect 50:463–474

    CAS  PubMed  Google Scholar 

  12. Ho JY, Gardiner A, Shah V, Steiner ME (2009) Equal kinematics between central anatomic single-bundle and double-bundle anterior cruciate ligament reconstructions. Arthroscopy 25:464–472

    Article  PubMed  Google Scholar 

  13. Hughes AW, Dwyer AJ, Govindaswamy R, Lankester B (2012) The use of intra-operative fluoroscopy for tibial tunnel placement in anterior cruciate ligament reconstruction. Bone Jt Res 1:234–237

    Article  CAS  Google Scholar 

  14. Kendoff D, Citak M, Voos J, Pearle AD (2009) Surgical navigation in knee ligament reconstruction. Clin Sports Med 28:41–50

    Article  CAS  PubMed  Google Scholar 

  15. Kim JG, Chang MH, Lim HC, Bae JH, Ahn JH, Wang JH (2013) Computed tomography analysis of the femoral tunnel position and aperture shape of transportal and outside-in ACL reconstruction: do different anatomic reconstruction techniques create similar femoral tunnels? Am J Sports Med 41:2512–2520

    Article  PubMed  Google Scholar 

  16. Klos TV (2014) Computer-assisted anterior cruciate ligament reconstruction. Four generations of development and usage. Sports Med Arthrosc 22:229–236

    PubMed  Google Scholar 

  17. Kodali P, Yang S, Koh J (2008) Computer-assisted surgery for anterior cruciate ligament reconstruction. Sports Med Arthrosc 16:67–76

    Article  PubMed  Google Scholar 

  18. Koh J, Koo SS, Leonard J, Kodali P (2006) Anterior cruciate ligament (ACL) tunnel placement: a radiographic comparison between navigated versus manual ACL reconstruction. Orthopedics 29:S122–S124

    PubMed  Google Scholar 

  19. Kohn D, Busche T, Carls J (1998) Drill hole position in endoscopic anterior cruciate ligament reconstruction. Results of an advanced arthroscopy course. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S13–S15

    Article  PubMed  Google Scholar 

  20. Kopf S, Musahl V, Bignozzi S, Irrgang JJ, Zaffagnini S, Fu FH (2014) In vivo kinematic evaluation of anatomic double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 42:2172–2177

    Article  PubMed  Google Scholar 

  21. Lubowitz JH (2009) Anteromedial portal technique for the anterior cruciate ligament femoral socket: pitfalls and solutions. Arthroscopy 25:95–101

    Article  PubMed  Google Scholar 

  22. Margier J, Tchouda SD, Banihachemi JJ, Bosson JL, Plaweski S (2015) Computer-assisted navigation in ACL reconstruction is attractive but not yet cost efficient. Knee Surg Sports Traumatol Arthrosc 23:1026–1034

    Article  PubMed  Google Scholar 

  23. Mehta VM, Paxton EW, Fithian DC (2009) Does the use of fluoroscopy and isometry during anterior cruciate ligament reconstruction affect surgical decision making? Clin J Sport Med 19:46–48

    Article  PubMed  Google Scholar 

  24. Moloney G, Araujo P, Rabuck S, Carey R, Rincon G, Zhang X, Harner C (2013) Use of a fluoroscopic overlay to assist arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med 41:1794–1800

    Article  PubMed  Google Scholar 

  25. Pearle AD, Kendoff D, Musahl V, Warren RF (2009) The pivot-shift phenomenon during computer-assisted anterior cruciate ligament reconstruction. J Bone Jt Surg Am 91(Suppl 1):115–118

    Article  Google Scholar 

  26. Picard F, DiGioia AM, Moody J, Martinek V, Fu FH, Rytel M, Nikou C, LaBarca RS, Jaramaz B (2001) Accuracy in tunnel placement for ACL reconstruction. Comparison of traditional arthroscopic and computer-assisted navigation techniques. Comput Aided Surg 6:279–289

    Article  CAS  PubMed  Google Scholar 

  27. Plaweski S, Tchouda SD, Dumas J, Rossi J, Moreau Gaudry A, Cinquin P, Bosson JL, Merloz P (2012) Evaluation of a computer-assisted navigation system for anterior cruciate ligament reconstruction: prospective non-randomized cohort study versus conventional surgery. Orthop Traumatol Surg Res 98:S91–S97

    Article  CAS  PubMed  Google Scholar 

  28. Schep NW, Stavenuiter MH, Diekerhof CH, Martens EP, van Haeff CM, Broeders IA, Saris DB (2005) Intersurgeon variance in computer-assisted planning of anterior cruciate ligament reconstruction. Arthroscopy 21:942–947

    Article  PubMed  Google Scholar 

  29. Segawa H, Koga Y, Omori G, Sakamoto M, Hara T (2005) Contact pressure in anterior cruciate ligament bone tunnels: comparison of endoscopic and two-incision technique. Arthroscopy 21:439–444

    Article  PubMed  Google Scholar 

  30. Shafizadeh S, Balke M, Hagn U, Grote S, Bouillon B, Banerjee M (2015) Variability of landmark acquisition affects tunnel calculation in image-free ACL navigation. Knee Surg Sports Traumatol Arthrosc 23:1917–1924

    Article  PubMed  Google Scholar 

  31. Steiner ME, Battaglia TC, Heming JF, Rand JD, Festa A, Baria M (2009) Independent drilling outperforms conventional transtibial drilling in anterior cruciate ligament reconstruction. Am J Sports Med 37:1912–1919

    Article  PubMed  Google Scholar 

  32. Taketomi S, Inui H, Nakamura K, Hirota J, Sanada T, Masuda H, Takeda H, Tanaka S, Nakagawa T (2014) Clinical outcome of anatomic double-bundle ACL reconstruction and 3D CT model-based validation of femoral socket aperture position. Knee Surg Sports Traumatol Arthrosc 22:2194–2201

    Article  PubMed  Google Scholar 

  33. Taketomi S, Inui H, Sanada T, Nakamura K, Yamagami R, Masuda H, Tanaka S, Nakagawa T (2014) Remnant-preserving anterior cruciate ligament reconstruction using a three-dimensional fluoroscopic navigation system. Knee Surg Relat Res 26:168–176

    Article  PubMed  PubMed Central  Google Scholar 

  34. Willcox NM, Clarke JV, Smith BR, Deakin AH, Deep K (2012) A comparison of radiological and computer navigation measurements of lower limb coronal alignment before and after total knee replacement. J Bone Jt Surg Br 94:1234–1240

    Article  CAS  Google Scholar 

  35. Zaffagnini S, Klos TV, Bignozzi S (2010) Computer-assisted anterior cruciate ligament reconstruction: an evidence-based approach of the first 15 years. Arthroscopy 26:546–554

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Ho Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare. Dr. BH Lee, DH Kum and JH Wang have no conflicts of interest or financial ties to disclose. Y Kim and H Cho work as a PhD. researcher at the KIST (Korea Institute of Science and Technology) and Dr. IJ Rhyu is a consultant for cadaveric experiments. None of the authors received financial support for this study.

Funding

This work was supported by a grant of the 2014 SMC-KIST Translational Research Program (SMX1140101). The funding sources had no involvement in the study design, collection, analysis or interpretation of the data, writing of the manuscript, or in the decision to submit the manuscript for publication.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

No informed consent was necessary for the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.H., Kum, D.H., Rhyu, I.J. et al. Clinical advantages of image-free navigation system using surface-based registration in anatomical anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 24, 3556–3564 (2016). https://doi.org/10.1007/s00167-016-4332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4332-6

Keywords

Navigation