Skip to main content
Log in

Multilayer scaffolds in orthopaedic tissue engineering

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration.

Methods

Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces.

Results

In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications.

Conclusions

Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akkouch A, Zhang Z, Rouabhia M (2011) A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration. J Biomed Mater Res A 96(4):693–704

  2. Atesok K, Fu FH, Wolf MR, Ochi M, Jazrawi LM, Doral MN, Lubovitz J, Rodeo S (2014) Augmentation of tendon-to-bone healing. J Bone Joint Surg Am 96(6):513–521

  3. Aydin HM (2011) A three-layered osteochondral plug: structural, mechanical, and in vitro biocompatibility analysis. Adv Eng Mater. 13(12):B511–B517

    Article  Google Scholar 

  4. Billstrom GH, Blom AW, Larsson S, Beswick AD (2013) Application of scaffolds for bone regeneration strategies: current trends and future directions. Injury 44(Suppl 1):S28–S33

    Article  PubMed  Google Scholar 

  5. Brophy RH, Kovacevic D, Imhauser CW, Stasiak M, Bedi A, Fox AJ, Deng XH, Rodeo SA (2011) Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon–bone healing after ACL reconstruction in a rat model. J Bone Joint Surg Am 93(4):381–393

  6. Butscher A, Bohner M, Hofmann S, Gauckler L, Muller R (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7(3):907–920

    Article  CAS  PubMed  Google Scholar 

  7. Chen G, Sato T, Tanaka J, Tateishi T (2006) Preparation of a biphasic scaffold for osteochondral tissue engineering. Mater Sci Eng C 26:118–123

    Article  Google Scholar 

  8. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cooper RR, Misol S (1970) Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg Am 52(1):1–20

    CAS  PubMed  Google Scholar 

  10. Crowley C, Wong JM, Fisher DM, Khan WS (2013) A systematic review on preclinical and clinical studies on the use of scaffolds for bone repair in skeletal defects. Curr Stem Cell Res Ther 8(3):243–252

    Article  CAS  PubMed  Google Scholar 

  11. Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, Dai K (2013) Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 34(28):6706–6716

    Article  CAS  PubMed  Google Scholar 

  12. Franzen A, Inerot S, Hejderup SO, Heinegard D (1981) Variations in the composition of bovine hip articular cartilage with distance from the articular surface. Biochem J 195:535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giannotti S, Bottai V, Dell’osso G, Pini E, De Paola G, Bugelli G et al (2013) Current medical treatment strategies concerning fracture healing. Clin Cases Miner Bone Metab 10(2):116–120

    PubMed  PubMed Central  Google Scholar 

  14. Han LH, Suri S, Schmidt CE, Chen S (2010) Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomed Microdevices 12(4):721–725

    Article  CAS  PubMed  Google Scholar 

  15. He P, Ng KS, Toh SL, Goh JC (2012) In vitro ligament-bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold. Biomacromolecules 13(9):2692–2703

  16. Ishihara K, Arai H, Nakabayashi N, Morita S, Furuya K (1992) Adhesive bone cement containing hydroxyapatite particle as bone compatible filler. J Biomed Mater Res 26:937–945

    Article  CAS  PubMed  Google Scholar 

  17. Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196

    Article  PubMed  Google Scholar 

  18. Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73

    Article  CAS  PubMed  Google Scholar 

  19. Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124

    PubMed  Google Scholar 

  20. Kon E, Mutini A, Arcangeli E, Delcogliano M, Filardo G, Nicoli Aldini N, Pressato D, Quarto R, Zaffagnini S, Marcacci M (2010) Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J Tissue Eng Regen Med 4(4):300–308

    Article  CAS  PubMed  Google Scholar 

  21. Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39(6):1180–1190

    Article  PubMed  Google Scholar 

  22. Kurien T, Pearson RG, Scammell BE (2013) Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J 95-B(5):583–597

  23. Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ (2014) Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 20(7–8):1342–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu WF, Hui EE, Bhatia SN, Chen CS (2010) Engineering cellular microenvironments. In: Atala A, Lanza R, Thomson JA, Nerem RM (eds) Foundations of regenerative medicine: clinical and therapeutic applications. Academic Print by Elsevier, San Diego, Burlington, London, pp 284–302

  25. Lopes MA, Monteiro FJ, Santos JD (1999) Glass-reinforced hydroxyapatite composites: fracture toughness and hardness dependence on microstructural characteristics. Biomaterials 20:2085–2090

    Article  CAS  PubMed  Google Scholar 

  26. Lu HH, Thomopoulos S (2013) Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng 15:201–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu HH, Subramony SD, Boushell MK, Zhang X (2010) Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 38(6):2142–2154

    Article  PubMed  PubMed Central  Google Scholar 

  28. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):419–433

    Article  PubMed  Google Scholar 

  29. Moffat KL, Wang IN, Rodeo SA, Lu HH (2009) Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin Sports Med 28(1):157–176

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moreau JL, Weir MD, Xu HH (2009) Self-setting collagencalcium phosphate bone cement: mechanical and cellular properties. J Biomed Mater Res A 91:605–613

    Article  PubMed  PubMed Central  Google Scholar 

  31. Newsham-West R, Nicholson H, Walton M, Milburn P (2007) Long-term morphology of a healing bone-tendon interface: a histological observation in the sheep model. J Anat 210(3):318–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ng KW, Khor HL, Hutmacher DW (2004) In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts. Biomaterials 25:2807–2818

    Article  CAS  PubMed  Google Scholar 

  33. NIH Definition of tissue engineering/regenerative medicine. http://www.tissue-engineering.net/

  34. Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16(10):2247–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Brien FJ, Harley BA, Yannas IV, Gibson L (2004) Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25:1077–1086

    Article  PubMed  Google Scholar 

  36. Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH (2008) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86(1):1–12

    Article  PubMed  Google Scholar 

  37. Woo S, Maynard J, Butler D, Lyon R, Torzilli P, Akeson W (1988) Ligament, tendon, and joint capsule insertions to bone. In: Woo SL-Y, Buckwalter JA (eds) Injury and repair of the musculoskeletal soft tissues. American Academy of Orthopaedic Surgery, Park Ridge, pp 133–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Rodeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atesok, K., Doral, M.N., Karlsson, J. et al. Multilayer scaffolds in orthopaedic tissue engineering. Knee Surg Sports Traumatol Arthrosc 24, 2365–2373 (2016). https://doi.org/10.1007/s00167-014-3453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3453-z

Keywords

Navigation