Skip to main content
Log in

Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Posterior cruciate ligament (PCL)-substituting total knee arthroplasty (TKA) designs were introduced to avoid paradoxical roll forward of the femur and to optimize knee kinematics. The aim of this in vitro study was to investigate post-cam function and contact mechanics and relate it to knee kinematics during squatting in eight contemporary posterior-stabilized TKA designs.

Methods

All prostheses were fixed on custom-designed metal fixtures and mounted in a knee rig and five sequential-loaded squats were performed between 30° and 130° of flexion. Contact pressure and contact area were measured using pressure-sensitive Tekscan sensors on the posterior face of the post. Kinematics was recorded with reflective markers and infrared light-capturing cameras.

Results

The post-cam mechanisms analyzed in this study are very variable in terms of design features. This leads to large variations in terms of the flexion angle at which the post and cam engage maximal contact force, contact pressure and contact area. We found that more functional post-cam mechanisms, which engage at lower flexion angle and have a similar behavior as normal PCL function, generally show more normal rollback and tibial rotation at the expense of higher contact forces and pressures. All designs show high contact forces. A positive correlation was found between contact force and initial contact angle.

Conclusion

Post-cam contact mechanics and kinematics were documented in a standardized setting. Post-cam contact mechanics are correlated with post-cam function. Outcomes of this study can help to develop more functional designs in future. Nevertheless, a compromise will always be made between functional requirements and risk of failure. We assume that more normal knee kinematics leads to more patient satisfaction because of better mobility. Understanding of the post-cam mechanism, and knowing how this system really works, is maybe the clue in further development of new total knee designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Argenson JN, Scuderi GR, Komistek RD et al (2005) In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech 38(2):277–284

    Article  PubMed  Google Scholar 

  2. Arnout N, Vandenneucker H, Bellemans J (2011) Posterior dislocation in TKR, a price for deep flexion? Knee Surg Sports Traumatol Arthrosc 19(6):911–913

    Article  PubMed  Google Scholar 

  3. Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and substituting knee arthroplasties. J Arthroplasty 12(3):297–304

    Article  CAS  PubMed  Google Scholar 

  4. Blackburne JS, Peel TE (1977) A new method of measuring patellar height. J Bone Joint Surg Br 59-B:241–242

    Google Scholar 

  5. Callaghan JJ, O’Rourke MR, Goetz DD et al (2002) Tibial post impingement in posterior stabilized total knee arthroplasty. CORR 404:83–88

    Article  Google Scholar 

  6. Chandran N, Amirouche F, Gonzalez MH et al (2003) Optimization of the posterior stabilized tibial post for greater femoral roll back after TKA, a finite element analysis. Int Orthop 33(3):687–693

    Article  Google Scholar 

  7. Christen B, Heesterbeek P, Wymymga A, Wehrli U (2007) Posterior cruciate ligament balancing in total knee replacement: the quantitative relationship between tightness of the flexion gap and tibial translation. JBJS Br 89(8):1046–1050

    CAS  PubMed  Google Scholar 

  8. Clarke HD, Math KR, Scuderi GR (2004) Polyethylene post failure in posterior stabilized total knee arthroplasty. J Arthroplasty 19(5):652–657

    Article  PubMed  Google Scholar 

  9. Fitzpatrick CK, Clary CW, Cyr AJ et al (2013) Mechanics of post-cam engagement during simulated dynamic activity. J Orthop Res 31(9):1438–1446

    Article  PubMed Central  PubMed  Google Scholar 

  10. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  CAS  PubMed  Google Scholar 

  11. Hamai S, Miura H, Matsuda S et al (2010) Contact stresses at the anterior aspect of the tibial post in posterior-stabilized total knee replacement. JBJS 92-A:1765–1773

    Article  Google Scholar 

  12. Harris ML, Morberg P, Bruce WJM, Walsh WR (1999) An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J Biomech 32(9):951–958

    Article  CAS  PubMed  Google Scholar 

  13. Johal P, Williams A, Wragg P, Hunt D, Gedroyc W (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight-bearing knee kinematics using ‘interventional’ MRI. J Biomech 38(2):269–276

    Article  CAS  PubMed  Google Scholar 

  14. Jung KA, Lee SC, Hwang SH, Kim SM (2009) Fractured polyethylene tibial post in a posterior-stabilized knee prosthesis presenting as a floating palpable mass. J Knee Surg 22(4):374–376

    Article  PubMed  Google Scholar 

  15. Li G, Most E, Otterberg E et al (2002) Biomechanics of posterior-substituting total knee arthroplasty: an in vitro study. Clin Orthop Relat Res 404:214–225

    Article  PubMed  Google Scholar 

  16. Li G, Zayontz S, Most E et al (2001) Cruciate retaining and cruciate substituting total knee arthroplasty. An in vitro comparison of the kinematics under muscle loads. J Arthropl 16(8 Suppl 1):150–156

    Article  CAS  Google Scholar 

  17. Lombardi AV, Mallory TH, Vaughn BK et al (1993) Dislocation following primary posterior-stabilized total knee arthroplasty. J Arthroplasty 8:633–639

    Article  PubMed  Google Scholar 

  18. Luyckx L, Luyckx T, Bellemans J, Victor J (2010) Iliotibial band traction syndrome in guided motion TKA: a new clinical entity in TKA. Acta Orthop Belg 76(4):507–512

    PubMed  Google Scholar 

  19. Nakayama K, Matsuda S, Miura H et al (2005) Contact stress at the post cam mechanism in posterior stabilized total knee arthroplasty. JBJS Br 87(4):483–488

    CAS  PubMed  Google Scholar 

  20. O’Rourke MR, Callaghan JJ, Goetz DD et al (2002) Osteolysis associated with a cemented modular posterior cruciate substituting total knee design: five to eight -year follow-up. JBJS 84:1362–1371

    Google Scholar 

  21. Puloski SK, Mc Calden RW, Mac Donald SJ et al (2001) Tibial post wear in posterior stabilized total knee arthroplasty. An unrecognized source of polyethylene debris. JBJS 83:390–397

    Google Scholar 

  22. Sharkey PF, Hozack WJ, Booth RE et al (1992) Posterior dislocation of total knee arthroplasty. Clin Orhop Rel Res 278:128–133

    Google Scholar 

  23. Shimizu N, Tomita T, Yamazaki T et al (2011) The effect of weight-bearing condition on kinematics in a high flexion, posterior stabilized total knee design. J Arthroplasty 26(7):1031–1037

    Article  PubMed  Google Scholar 

  24. Stiehl JB, Komistek RD, Dennis DA et al (1995) Fluoroscopic analysis of kinematics after posterior cruciate retaining knee arthroplasty. J Bone Joint Surg Br 77(6):884–889

    CAS  PubMed  Google Scholar 

  25. Toutoungi DE, Lu TW, Leardini A et al (2000) Cruciate ligament forces in the human knee during rehabilitation exercises. Clin Biomech 15(3):176–187

    Article  CAS  Google Scholar 

  26. van Duren BH, Pandit H, Price M et al (2012) Bicruciate substituting total knee replacement: how effective are the added kinematic constraints in vivo? Knee Surg Sports Traumatol Arthrosc 20(10):2002–2010

    Article  PubMed  Google Scholar 

  27. Verra WC, van den Boom LG, Jacobs W, Clement DJ, Wymenga AA, Nelissen RG (2013) Retention versus sacrifice of the posterior cruciate ligament in total knee replacement for treatment of osteoarthritis and rheumatoid arthritis, Cochrane review

  28. Victor J, Kyle JP, Mueller BS et al (2010) In vivo kinematics after a cruciate-substituting TKA. CORR 468:807–814

    Article  Google Scholar 

  29. Victor J, Vanglabbeek F, Vander Sloten J, Parizel PM, Somville J, Bellemans J (2009) An experimental model for kinematic analysis of the knee. J Bone Joint Surg Am 91:150–163

    Article  PubMed  Google Scholar 

  30. Victor J, Van Doninck D, Labey L, Innocnti B, Parizel PM, Bellemans J (2009) How precise can bony landmarks be determined on a CT scan of the knee. Knee 16(5):358–365

    Article  CAS  PubMed  Google Scholar 

  31. Wasielewski RC (2002) The causes of insert backside wear in total knee arthroplasty. CORR 404:232–246

    Article  Google Scholar 

  32. Waslewski GL, Marson BM, Benjamin JB (1998) Early incapacitating instability of posterior cruciate ligament-retaining in total knee arthroplasty. J Arthroplasty 13(7):763–767

    Article  CAS  PubMed  Google Scholar 

  33. Wilson DR, Apreleva MV, Eichler MJ, Harrold FR (2003) Accuracy and repeatability of a pressure measurement system in the patellofemoral joint. J Biomech 36(12):1909–1915

    Article  CAS  PubMed  Google Scholar 

  34. Wirz D, Becker R, Li SF, Friederich NF, Müller W (2002) Validation of the Tekscan system for statistic and dynamic pressure measurements of the human femorotibial joint. Biomed Tech (Berl) 47(7–8):195–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Arnout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnout, N., Vanlommel, L., Vanlommel, J. et al. Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs. Knee Surg Sports Traumatol Arthrosc 23, 3343–3353 (2015). https://doi.org/10.1007/s00167-014-3167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3167-2

Keywords

Navigation