Skip to main content
Log in

Maximum load to failure and tensile displacement of an all-suture glenoid anchor compared with a screw-in glenoid anchor

  • Shoulder
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to evaluate the biomechanical behavior of an all-suture glenoid anchor in comparison with a more conventional screw-in glenoid anchor, with regard to maximum load to failure and tensile displacement.

Methods

All mechanical testing was performed using an Instron ElectroPuls E1000 mechanical machine, with a 10 N pre-load and displacement rate of 10 mm/min. Force–displacement curves were generated, with calculation of maximum load, maximum displacement, displacement at 50 N and stiffness. Pretesting of handset Y-Knots in bone analog models revealed low force displacement below 60 N of force. Subsequently, three groups of anchors were tested for pull out strength in bovine bone and cadaver glenoid bone: a bioabsorbable screw-in anchor (Bio Mini-Revo, ConMed Linvatec), a handset all-suture anchor (Y-Knot, ConMed Linvatec) and a 60 N pre-tensioned all-suture anchor (Y-Knot). A total of 8 anchors from each group was tested in proximal tibia of bovine bone and human glenoids (age range 50–90).

Results

In bovine bone, the Bio Mini-Revo displayed greater maximum load to failure (206 ± 77 N) than both the handset (140 ± 51 N; P = 0.01) and the pre-tensioned Y-Knot (135 ± 46 N; P = 0.001); no significant difference was seen between the three anchor groups in glenoid bone. Compared to the screw-in anchors, the handset all-suture anchor displayed inferior fixation, early displacement and greater laxity in the bovine bone and cadaveric bone (P < 0.05). Pre-tensioning the all-suture anchor to 60 N eliminated this behavior in all bone models.

Conclusions

Handset Y-Knots display low force anchor displacement, which is likely due to slippage in the pilot hole. Pre-tensioning the Y-Knot to 60 N eliminates this behavior.

Level of evidence

I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aerssens J, Boonen S, Lowet G, Dequeker J (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139:663–670

    CAS  PubMed  Google Scholar 

  2. Barber FA, Coons DA, Ruiz-Suarez M (2007) Cyclic load testing of biodegradable suture anchors containing 2 high-strength sutures. Arthroscopy 23:355–360

    Article  PubMed  Google Scholar 

  3. Barber FA, Herbert MA (2013) Cyclic loading biomechanical analysis of the pullout strengths of rotator cuff and glenoid anchors: 2013 update. Arthroscopy 29:832–844

    Article  PubMed  Google Scholar 

  4. Barber FA, Herbert MA, Hapa O, Rapley JH, Barber CA, Bynum JA, Hrnack SA (2011) Biomechanical analysis of pullout strengths of rotator cuff and glenoid anchors: 2011 update. Arthroscopy 27:895–905

    Article  PubMed  Google Scholar 

  5. Barber FA, McGarry JE, Herbert MA, Anderson RB (2008) A biomechanical study of achilles tendon repair augmentation using graft jacket matrix. Foot Ankle Int 29:329–333

    Article  PubMed  Google Scholar 

  6. Burkhart SS, Wirth MA, Simonich M, Salem D, Lanctot D, Athanasiou K (2000) Knot security in simple sliding knots and its relationship to rotator cuff repair: how secure must the knot be? Arthroscopy 16:202–207

    Article  CAS  PubMed  Google Scholar 

  7. Chong AC, Friis EA, Ballard GP, Czuwala PJ, Cooke FW (2007) Fatigue performance of composite analogue femur constructs under high activity loading. Ann Biomed Eng 35:1196–1205

    Article  PubMed  Google Scholar 

  8. Debski RE, Wong EK, Woo SL, Sakane M, Fu FH, Warner JJ (1999) In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading. J Orthop Res 17:769–776

    Article  CAS  PubMed  Google Scholar 

  9. Diop A, Maurel N, Chang VK, Kany J, Duranthon LD, Grimberg J (2011) Tendon fixation in arthroscopic latissimus dorsi transfer for irreparable posterosuperior cuff tears: an in vitro biomechanical comparison of interference screw and suture anchors. Clin Biomech (Bristol, Avon) 26:904–909

    Article  Google Scholar 

  10. Frich LH, Odgaard A, Dalstra M (1998) Glenoid bone architecture. J Shoulder Elbow Surg 7:356–361

    Article  CAS  PubMed  Google Scholar 

  11. Kalouche I, Crepin J, Abdelmoumen S, Mitton D, Guillot G, Gagey O (2010) Mechanical properties of glenoid cancellous bone. Clin Biomech (Bristol, Avon) 25:292–298

    Article  Google Scholar 

  12. Leedle BP, Miller MD (2005) Pullout strength of knotless suture anchors. Arthroscopy 21:81–85

    Article  PubMed  Google Scholar 

  13. Lehtinen JT, Tingart MJ, Apreleva M, Warner JJ (2004) Total, trabecular, and cortical bone mineral density in different regions of the glenoid. J Shoulder Elbow Surg 13:344–348

    Article  PubMed  Google Scholar 

  14. Martetschlager F, Michalski MP, Jansson KS, Wijdicks CA, Millett PJ (2013) Biomechanical evaluation of knotless anterior and posterior Bankart repairs. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2602-0

  15. Mazzocca AD, Chowaniec D, Cote MP, Fierra J, Apostolakos J, Nowak M, Arciero RA, Beitzel K (2012) Biomechanical evaluation of classic solid and novel all-soft suture anchors for glenoid labral repair. Arthroscopy 5:642–648

    Article  Google Scholar 

  16. McLain RF, McKinley TO, Yerby SA, Smith TS, Sarigul-Klijn N (1997) The effect of bone quality on pedicle screw loading in axial instability: a synthetic model. Spine (Phila Pa 1976) 22:1454–1460

    Article  CAS  Google Scholar 

  17. Mullett H, O’Donnell T, Felle P, O’Rourke K, FitzPatrick D (2002) Development of a model for occipital fixation–validation of an analogue bone material. Proc Inst Mech Eng H 216:37–42

    Article  CAS  PubMed  Google Scholar 

  18. Provencher MT, Verma N, Obopilwe E, Rincon LM, Tracy J, Romeo AA, Mazzocca A (2008) A biomechanical analysis of capsular plication versus anchor repair of the shoulder: can the labrum be used as a suture anchor? Arthroscopy 24:210–216

    Article  PubMed  Google Scholar 

  19. Roth CA, Bartolozzi AR, Ciccotti MG, Wetzler MJ, Gillespie MJ, Snyder-Mackler L, Santare MH (1998) Failure properties of suture anchors in the glenoid and the effects of cortical thickness. Arthroscopy 14:186–191

    Article  CAS  PubMed  Google Scholar 

  20. Siffri PC, Peindl RD, Coley ER, Norton J, Connor PM, Kellam JF (2006) Biomechanical analysis of blade plate versus locking plate fixation for a proximal humerus fracture: comparison using cadaveric and synthetic humeri. J Orthop Trauma 20:547–554

    Article  PubMed  Google Scholar 

  21. Sileo MJ, Lee SJ, Kremenic IJ, Orishimo K, Ben-Avi S, McHugh M, Nicholas SJ (2009) Biomechanical comparison of a knotless suture anchor with standard suture anchor in the repair of type II SLAP tears. Arthroscopy 25:348–354

    Article  PubMed  Google Scholar 

  22. Sparks BS, Nyland J, Nawab A, Blackburn E, Krupp R, Burden R (2008) Cyclic loading comparison of bio-suturetak-#2 fiberwire and Bio Mini-Revo-#2 Hi-Fi suture anchor-sutures in cadaveric scapulae. Knee Surg Sports Traumatol Arthrosc 16:317–325

    Article  PubMed  Google Scholar 

  23. Wetzler MJ, Bartolozzi AR, Gillespie MJ, Roth CA, Ciccotti MG, Snyder-Mackler L, Santare MH (1996) Fatigue properties of suture anchors in anterior shoulder reconstructions: mitek GII. Arthroscopy 12:687–693

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Dwyer.

Additional information

T. Dwyer and T. L. Willett have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwyer, T., Willett, T.L., Dold, A.P. et al. Maximum load to failure and tensile displacement of an all-suture glenoid anchor compared with a screw-in glenoid anchor. Knee Surg Sports Traumatol Arthrosc 24, 357–364 (2016). https://doi.org/10.1007/s00167-013-2760-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-013-2760-0

Keywords

Navigation