Skip to main content
Log in

A posteriori identification of dependencies between continuous variables for the engineering change management

  • Original Paper
  • Published:
Research in Engineering Design Aims and scope Submit manuscript

Abstract

The objective of this document is to contribute to the modelling of engineering changes and their propagation. Usable in preliminary redesign activities, a new approach is suggested that allows greater efficiency. Given a product model, the idea is to use the experiments to calculate in advance the consequences of potential changes in continuous variables. These consequences are collected, analysed and structured in a dependency model, noted \(\langle \varGamma , \varPhi \rangle\), composed of a dependency graph \(\varGamma\) and its associated set of influence functions \(\varPhi\). Bilateral influence functions, associated with arcs, quantify the dependencies between node pairs. Multilateral influence functions, identified by the application of the total differential theorem, define the dependencies between a node and all influential nodes on which it depends. Finally, the relative error is calculated by following the infinitesimal assumption of the total differential for each variables. Our findings show that such a dependency model is informative and allows effective prediction and evaluation of changes. The approach is illustrated by a geometric bicycle model. The results are discussed and future areas of research are finally presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(p_i\) or i :

Variable i

n :

Number of variables/nodes

\(x_i^0\) :

Current value of variable i

\({\hat{x}}_i\) :

New value of variable i after change

\(\overline{x_i}\) :

Upper boundary of variable i

\(\underline{x_i}\) :

Lower boundary of variable i

\(\delta _i\) :

Variation of variable i after a change

\(\sigma _i\) :

Sampling step associated to variable i

\(k_i\) :

Number of sampled values of \({\hat{x}}_i\)

\(\varGamma\) :

Dependency graph

\(\varGamma _0\) :

Initial dependency graph

\(\varPhi\) :

Influence functions

\(\phi _{ij}\) :

Bilateral influence function carried out by an edge (ij)

\(\varphi _j\) :

Multilateral influence function associated with node j

\(d_{ijk}\) :

Value \({\hat{x}}_j\) of variable j according to the kth sampled value of variable i

\(g_{ijk}\) :

Gap between the new value \({\hat{x}}_j\) of variable j after the kth modification of i and its initial value

\(v_{i,j}\) :

Variance of the new values of variable j after the change of variable i

\(b_{i,j}\) :

Binary dependency matrix element

\(q_{i,j}\) :

Quantitative dependency matrix element

\(s_{i,j}\) :

Qualitative dependency matrix element

\(f_{i,j}\) :

Functional dependency matrix element

References

  • Brooks CEP, Carruthers N et al (1953) Handbook of statistical methods in meteorology. Q J R Meteorol Soc 79(342):570–571

    Google Scholar 

  • Browning T (2016) Design structure matrix extensions and innovations: a survey and new opportunities. IEEE Trans Eng Manag 63(1):27–52

    Article  Google Scholar 

  • Cheng H, Chu X (2012) A network-based assessment approach for change impacts on complex product. J Intell Manuf 23(4):1419–1431

    Article  Google Scholar 

  • Chua DK, Hossain MA (2012) Predicting change propagation and impact on design schedule due to external changes. IEEE Trans Eng Manag 59(3):483–493

    Article  Google Scholar 

  • Clarkson PJ, Simons C, Eckert C (2004) Predicting change propagation in complex design. J Mech Des 126(5):788–797

    Article  Google Scholar 

  • Cohen T, Navthe S, Fulton RE (2000) C-far, change favorable representation. Comput Aided Des 32(5):321–338

    Article  Google Scholar 

  • Eckert C, Isaksson O, Earl C (2019) Design margins: a hidden issue in industry. Des Sci 5:1–24

    Article  Google Scholar 

  • Eppinger SD, Browning TR (2012) Design structure matrix methods and applications. MIT Press, London, England

    Book  Google Scholar 

  • Eppinger SD, Whitney DE, Smith RP, Gebala DA (1994) A model-based method for organizing tasks in product development. Res Eng Des 6(1):1–13

    Article  Google Scholar 

  • Flanagan TL, Eckert CM, Eger T, Smith J, Clarkson PJ (2003) A functional analysis of change propagation. In: DS 31: Proceedings of ICED 03, the 14th International Conference on Engineering Design, Stockholm

  • Freedman D, Diaconis P (1981) On the histogram as a density estimator: L 2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 57(4):453–476

    Article  MathSciNet  MATH  Google Scholar 

  • Fricke E, Gebhard B, Negele H, Igenbergs E (2000) Coping with changes: causes, findings, and strategies. Syst Eng 3(4):169–179

    Article  Google Scholar 

  • Goursat E (1904) Vol 1: derivatives and differentials, definite integrals, expansion in series, applications togeometry. A course in mathematical analysis. Ginn and Company, Boston, New York, pp 19–34

    Google Scholar 

  • Guillon D (2019) Assistance à l’élaboration d’offres du produit au service : proposition d’un modèle générique centré connaissances et d’une méthodologie de déploiement et d’exploitation, PhD thesis, Toulouse University

  • Hamraz B, Caldwell NHM, John Clarkson P (2012) A multidomain engineering change propagation model to support uncertainty reduction and risk management in design. J Mech Des 134(10):100905

    Article  Google Scholar 

  • Hamraz B (2013) Engineering change modelling using a function-behaviour-structure scheme, PhD thesis, University of Cambridge

  • Hamraz B, Caldwell NHM, Wynn DC, Clarkson P (2013) Requirements-based development of an improved engineering change management method. J Eng Des 24(11):765–793

    Article  Google Scholar 

  • Huang GQ, Mak KL (1999) Current practices of engineering change management in uk manufacturing industries. Int J Oper Prod Manag 19(1):21–37

    Article  Google Scholar 

  • Huntsberger DV (1961) Elements of statistical inference. Allyn & Bacon, Needham Heights, MA. https://doi.org/10.1037/11778-000

    Book  Google Scholar 

  • ISO (2014) Bicycle iso 4210:2014, cycles-safety requirements for bicycles. Technical report, The International Organization for Standardization ISO

  • Jarratt TAW, Eckert CM, Weeks R, Clarkson PJ (2003) Environmental legislation as a driver of design. In: Folkeson A, Gralen K, Norell M, Sellgren U (eds), 14th International Conference on Engineering Design-ICED’0, Stockholm, Sweden, pp 231–232

  • Jarratt T, Keller R, Nair S, Eckert C, Clarkson PJ (2004) Visualization techniques for product change and product modelling in complex design. In: Blackwell AF, Marriott K, Shimojima A (eds) Diagrammatic representation and Inference. Springer, Berlin, Heidelberg, pp 388–391

    Chapter  MATH  Google Scholar 

  • Jarratt TAW, Eckert CM, Caldwell NHM, Clarkson PJ (2011) Engineering change: an overview and perspective on the literature. Res Eng Des 22(2):103–124

    Article  Google Scholar 

  • Keller R, Eger T, Eckert C, Clarkson PJ (2005) Visualising change propagation. In: Samuel A, Lewis W (eds), Proceedings ICED 05, the 15th International Conference on engineering design, vol DS. 35, Design Society. Melbourne, Australia, pp 62–63

  • Keller R, Eckert CM, Clarkson PJ (2009) Using an engineering change methodology to support conceptual design. J Eng Des 20(6):571–587. https://doi.org/10.1080/09544820802086988

    Article  Google Scholar 

  • Kim SY, Moon S K, Oh HS, Park T, Kyung G, Park KJ (2013) Change propagation analysis for sustainability in product design. In: Proceedings of the 2013 IEEE International Conference on industrial engineering and engineering management (IEEM)’, IEEE, Bangkok, pp. 872–876

  • Koh EC (2017) A study on the requirements to support the accurate prediction of engineering change propagation. Syst Eng 20(2):147–157

    Article  MathSciNet  Google Scholar 

  • Koh EC, Caldwell NH, Clarkson PJ (2012) A method to assess the effects of engineering change propagation. Res Eng Des 23(4):329–351

    Article  Google Scholar 

  • Kusiak A, Wang J (1995) Dependency analysis in constraint negotiation. IEEE Trans Syst Man Cybern 25(9):1301–1313

    Article  Google Scholar 

  • Martin MV, Ishii K (2002) Design for variety: developing standardized and modularized product platform architectures. Res Eng Des 13(4):213–235

    Article  Google Scholar 

  • Masmoudi M, Leclaire P, Zolghadri M, Haddar M (2015) Dependency identification for engineering change management (ecm): an example of computer-aided-design (cad)-based approach. In: Proceedings of the 20th International Conference on engineering design (ICED 15)’, Milan

  • Masmoudi M, Leclaire P, Zolghadri M, Haddar M (2017) Change propagation prediction: a formal model for two-dimensional geometrical models of products. Concurr Eng 25(2):174–189

    Article  Google Scholar 

  • Mirdamadi S, Addouche S-A, Zolghadri M (2018) A bayesian approach to model change propagation mechanisms. Proc CIRP 70:1–6

    Article  Google Scholar 

  • Newman ME (2005) A measure of betweenness centrality based on random walks. Soc Netw 27(1):39–54

    Article  Google Scholar 

  • Ollinger GA, Stahovich TF (2004) Redesignit-a model-based tool for managing design changes. J Mech Des 126(2):208–216

    Article  Google Scholar 

  • Reddi K, Moon Y (2009) A framework for managing engineering change propagation. Int J Innov Learn 6(5):461–476

    Article  Google Scholar 

  • Roozenburg NF, Eekels J (1995) Product design: fundamentals and methods, vol 2. Wiley, Seattle, Washington

    Google Scholar 

  • Rouibah K, Caskey KR (2003) Change management in concurrent engineering from a parameter perspective. Comput Ind 50:15–34

    Article  Google Scholar 

  • Rutka A, Guenov M, Lemmens Y, Schmidt-Schïffer T, Coleman P, Riviere A (2006) Methods for engineering change propagation analysis. In: Proceedings of 25th congress of the international council of the aeronautical sciences (ICAS)

  • Scott DW (1979) On optimal and data-based histograms. Biometrika 66(3):605–610

    Article  MathSciNet  MATH  Google Scholar 

  • Sturges HA (1926) The choice of a class interval. J Am Stat Assoc 21(153):65–66

    Article  Google Scholar 

  • Terwiesch C, Loch CH (1999) Managing the process of engineering change orders: the case of the climate control system in automobile development. J Prod Innov Manag 16(2):160–172

    Article  Google Scholar 

  • Vareilles E (2005) Conception et approches par propagation de contraintes: contribution à la mise en oeuvre d’un outil d’aide interactif, PhD thesis, L’institut national polytechnique de Toulouse

  • Wright IC (1997) A review of research into engineering change management: implications for product design. Des Stud 18(1):33–42

    Article  Google Scholar 

  • Yang F, Duan G (2012) Developing a parameter linkage based method for searching change propagation paths. Res Eng Des 23(4):253–372

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Masmoudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masmoudi, M., Zolghadri, M. & Leclaire, P. A posteriori identification of dependencies between continuous variables for the engineering change management. Res Eng Design 31, 257–274 (2020). https://doi.org/10.1007/s00163-020-00338-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00163-020-00338-5

Keywords

Navigation