Skip to main content
Log in

Wall-modeled large eddy simulation of turbulent channel flow at high Reynolds number using the von Karman length scale

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The von Karman length scale is able to reflect the size of the local turbulence structure. However, it is not suitable for the near wall region of wall-bounded flows, for its value is almost infinite there. In the present study, a simple and novel length scale combining the wall distance and the von Karman length scale is proposed by introducing a structural function. The new length scale becomes the von Karman length scale once local unsteady structures are detected. The proposed method is adopted in a series of turbulent channel flows at different Reynolds numbers. The results show that the proposed length scale with the structural function can precisely simulate turbulence at high Reynolds numbers, even with a coarse grid resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman, D.R.: Computatisnal aerodynamics development and outlook. AIAA J. 17, 1293–1313 (1979)

    Article  MATH  Google Scholar 

  2. Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24, 011702 (2012)

  3. Piomelli, U.: Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44, 437–446 (2008)

    Article  Google Scholar 

  4. Spalart, P.R., Jou, W.H., Strelets, M.K., et al.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Advances in DNS/LES. In: Liu, C., Liu, Z. (eds.) First AFOSR International Conference on DNS/LES (1997)

  5. Spalart, P.R., Deck, S., Shur, M.L., et al.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  MATH  Google Scholar 

  6. Travin, A.K., Shur, M.L., Sparlart, P.R. et al.: Improvement of delayed detached-eddy simulation for LES with wall modelling. In: ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, Netherlands (2006)

  7. Shur, M.L., Sparlart, P.R., Strelets, M.K., et al.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 2(9), 1638–1649 (2008)

    Article  Google Scholar 

  8. Nikitin, N.V., Nicoud, F., Wasistho, B., et al.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)

    Article  MATH  Google Scholar 

  9. Roidl, B., Meinke, M., Schröder, W.: A reformulated synthetic turbulence generation method for a zonal RANS-LES method and its application to zero-pressure gradient boundary layers. Int. J. Heat Fluid Flow 14, 28–40 (2013)

    Article  Google Scholar 

  10. Piomelli, U., Balaras, E., Pasinato, H.D., et al.: The inner–outer layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24, 538–550 (2003)

    Article  Google Scholar 

  11. Patil, S., Tafti, D.: Wall modelled large eddy simulations of complex high Reynolds number flows with synthetic inlet turbulence. Int. J. Heat Fluid Flow 33, 9–21 (2012)

    Article  Google Scholar 

  12. Nicoud, F., Baggett, J.S., Moin, P., et al.: Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation. Phys. Fluids 13, 2968–2984 (2001)

    Article  MATH  Google Scholar 

  13. Laraufie, R., Deck, S.: Assessment of Reynolds stresses tensor reconstruction methods for synthetic turbulent inflow conditions. Application to hybrid RANS/LES methods. Int. J. Heat Fluid Flow 42, 68–78 (2013)

    Article  Google Scholar 

  14. Davidson, L., Dahlström, S.: Hybrid LES-RANS: An approach to make LES applicable at high Reynolds number. Int. J. Comput. Fluid D 19, 415–427 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Menter, F.R., Kuntz, M., Bender, R.: A scale-adaptive simulation model for turbulent flow predictions. In: Conference of 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2003)

  16. Menter, F.R., Egorov, Y.: A scale adaptive simulation model using two-equation models. In: Conference of 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2005)

  17. Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul. Combust. 85, 113–138 (2010)

    Article  MATH  Google Scholar 

  18. Menter, F.R.: Eddy viscosity transport equations and their relation to the k-\(\varepsilon \) model. J. Fluid Eng. 119, 876–884 (1997)

    Article  Google Scholar 

  19. Davidson, L.: Evaluation of the SST-SAS model: channel flow, asymmetric diffuser and axi-symmetric hill. In: Wesseling, P., Onate, E., Periaux, J. (eds.) European Conference on Computational Fluid Dynamics (2006)

  20. Egorov, Y., Menter, F.R., Lechner, R., et al.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: Application to complex flows. Flow Turbul. Combust. 85, 139–165 (2010)

    Article  MATH  Google Scholar 

  21. Menter, F.R., Garbaruk, A., Smirnov, P., et al.: Scale-Adaptive Simulation with Artificial Forcing. Progress in Hybrid RANS-LES Modelling. Springer, Berlin (2010)

    Google Scholar 

  22. Spalart, P.R., Allmaras, S.R.: A one equation turbulence model for aerodynamic flows. In: Conference of 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA (1992)

  23. Menter, F.R., Egorov, Y., Rusch, D.: Steady and unsteady flow modelling using the k-\(\surd \) kL model. In: Hanjalic K., Nagano Y., Jakirlic S. (eds.) Proceedings of the Fifth International Symposium on Turbulence, Heat and Mass Transfer, Dubrovnik, Croatia, 25–29 September, 2006. Begell House, New York (2006)

  24. Xu, J.L., Hu, N., Gao, G.: A High-Fidelity Turbulence Length Scale for Flow Simulation. Progress in Hybrid RANS-LES Modelling. Springer, Berlin (2012)

    Google Scholar 

  25. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16, 3670–3681 (2004)

    Article  MATH  Google Scholar 

  26. Xu, J.L., Gao, G., Yang, Y.: A RANS/LES hybrid model based on local flow structure. Acta Aeronaut. Sin. 35, 2992–2999 (2014)

    Google Scholar 

  27. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to \(Re=590\). Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  28. Piomelli, U., Balaras, E., Pasinato, H., et al.: The inner–outer layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24, 538–550 (2003)

    Article  Google Scholar 

  29. Keating, A., Piomelli, U.: A dynamic stochastic forcing method as a wall-layer model for large-eddy simulation. J. Turbul. 7(12), 1–24 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfei Chen.

Additional information

Communicated by Dr. Philippe Spalart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Li, M., Zhang, Y. et al. Wall-modeled large eddy simulation of turbulent channel flow at high Reynolds number using the von Karman length scale. Theor. Comput. Fluid Dyn. 30, 565–577 (2016). https://doi.org/10.1007/s00162-016-0399-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-016-0399-4

Keywords

Navigation