Skip to main content
Log in

Specified discharge velocity models for numerical simulations of laminar vortex rings

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We numerically and theoretically investigate the flow generated at the exit section of a piston/cylinder arrangement that is generally used in experiments to produce vortex rings. Accurate models for the velocity profile in this section (also called specified discharge velocity, SDV models) are necessary in (i) numerical simulations of laminar vortex rings that do not compute the flow inside the cylinder and (ii) in slug-models that provide a formula for the total circulation of the flow. Based on the theoretical and numerical analysis of the flow evolution in the entrance region of a pipe, we derive two new and easy to implement SDV models. A first model takes into account the unsteady evolution of the centerline velocity, while the second model also includes the time variation of the characteristics of the boundary layer at the exit plane of the vortex generator. The models are tested in axisymmetric direct numerical simulations of vortex rings. As distinguished from classical SDV model, the new models allow to accurately reproduce the characteristics of the flow. In particular, the time evolution of the total circulation is in good agreement with experimental results and previous numerical simulations including the vortex generator. The second model also provides a more realistic time evolution of the vortex ring circulation. Using the classical slug-model and the new correction for the centerline velocity, we finally derive a new and accurate analytical expression for the total circulation of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.A.: Handbook of mathematical functions with formulas, graphs and mathematical tables. National Bureau of Standards, Dover (1972)

    MATH  Google Scholar 

  2. Archer P.J., Thomas T.G., Coleman G.N.: Passive scalar mixing in vortex rings. J. Fluid Mech. 598, 201–226 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  4. Danaila I., Hélie J.: Numerical simulation of the postformation evolution of a laminar vortex ring. Phys. Fluids 20, 073602 (2008)

    Article  Google Scholar 

  5. Dabiri J.O., Gharib M.: A revised slug model boundary layer correction for starting jet vorticity flux. Theor. Comput. Fluid Dyn. 17, 293–295 (2004)

    Article  MATH  Google Scholar 

  6. Dabiri J.O., Gharib M.: Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 538, 111–136 (2005)

    Article  MATH  Google Scholar 

  7. Fargie D., Martin B.W.: Developing laminar flow in a pipe of circular cross-section. Proc. R. Soc. Lond.. Ser. A, Math. Phys. Sci. 321, 461–476 (1971)

    Google Scholar 

  8. Gharib M., Rambod E., Shariff K.: A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121–140 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Heeg R.S., Riley N.: Simulations of the formation of an axisymmetric vortex ring. J. Fluid Mech. 339, 199–211 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hettel M., Wetzel F., Habisreuther P., Bockhorn H.: Numerical verification of the similarity laws for the formation of laminar vortex rings. J. Fluid Mech. 590, 35–60 (2007)

    Article  MATH  Google Scholar 

  11. James S., Madnia C.K.: Direct numerical simulation of a laminar vortex ring. Phys. Fluids 8, 2400–2414 (1996)

    Article  MATH  Google Scholar 

  12. Jiang H., Grosenbaugh M.A.: Numerical simulation of vortex ring formation in the presence of background flow with implications for squid propulsion. Theor. Comput. Fluid Dyn. 20, 103–123 (2006)

    Article  MATH  Google Scholar 

  13. Kim J., Moin P.: Application of a fractional step method to incompressible navier–stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Krueger P.S.: Circulation and trajectories of vortex rings formed from tube and orifice openings. Phys. D 237, 2218–2222 (2008)

    Article  MATH  Google Scholar 

  15. Krueger P.S., Gharib M.: An over-pressure correction to the slug model for vortex ring calculation. J. Fluid Mech. 545, 427–443 (2005)

    Article  MATH  Google Scholar 

  16. Lim, T.T., Nickels, T.B.: Vortex Rings, vol. Vortices in Fluid Flows. pp. 95. Kluwer, Dordrecht (1995)

  17. Michalke A.: Survey on jet instability theory. Prog. Aerospace Sci. 21, 159–199 (1984)

    Article  Google Scholar 

  18. Moffatt H.K.: Generalised vortex rings with and without swirl. Fluid Dyn. Res. 3, 22–30 (1988)

    Article  Google Scholar 

  19. Mohanty A.K., Asthana S.B.L.: Laminar flow in the entrance region of a smooth pipe. J. Fluid Mech. 90, 433–447 (1978)

    Article  Google Scholar 

  20. Mohseni K., Gharib M.: A model for universal time scale of vortex ring formation. Phys. Fluids 10, 2436–2438 (1998)

    Article  Google Scholar 

  21. Mohseni K., Ran H., Colonius T.: Numerical experiments on vortex ring formation. J. Fluid Mech. 430, 267–282 (2001)

    Article  MATH  Google Scholar 

  22. Orlandi P.: Fluid Flow Phenomena: A Numerical Toolkit. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  23. Orlanski I.: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21, 251–269 (1976)

    Article  MATH  Google Scholar 

  24. Rai M., Moin P.: Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Physics 96, 15–53 (1991)

    Article  MATH  Google Scholar 

  25. Rosenfeld M., Rambod E., Gharib M.: Circulation and formation number of a laminar vortex ring. J. Fluid Mech. 376, 297–318 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ruith M.R., Chen P., Meiburg E.: Development of boundary conditions for direct numerical simulations of three-dimensional vortex breakdown phenomena in semi-infinite domains. Comp. Fluids 33, 1225–1250 (2004)

    Article  MATH  Google Scholar 

  27. Saffman P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  28. Sau R., Mahesh K.: Passive scalar mixing in vortex rings. J. Fluid Mech. 582, 449–461 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schlichting H.: Boundary-Layer Theory. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  30. Shadden S.C., Katija K., Rosenfeld M., Marsden J.E., Dabiri J.O.: Transport and stirring induced by vortex formation. J. Fluid Mech. 593, 315–331 (2007)

    Article  MATH  Google Scholar 

  31. Shariff K., Leonard A.: Vortex rings. Ann. Rev. Fluid Mech. 24, 235–279 (1992)

    Article  MathSciNet  Google Scholar 

  32. Shusser M., Gharib M., Rosenfeld M., Mohseni K.: On the effect of pipe boundary layer growth on the formation of a laminar vortex ring generated by a piston–cylinder arrangement. Theor. Comput. Fluid Dyn. 15, 303–316 (2002)

    Article  MATH  Google Scholar 

  33. Sullivan I.S., Niemela J.J., Hershberger R.E., Bolster D., Donnelly R.J.: Dynamics of thin vortex rings. J. Fluid Mech. 609, 319–347 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Verzicco R., Orlandi P.: A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402–414 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhao W., Steven H.F., Mongeau L.G.: Effects of trailing jet instability on vortex ring formation. Phys. Fluids 12, 589–596 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionut Danaila.

Additional information

Communicated by M. Y. Hussaini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danaila, I., Vadean, C. & Danaila, S. Specified discharge velocity models for numerical simulations of laminar vortex rings. Theor. Comput. Fluid Dyn. 23, 317–332 (2009). https://doi.org/10.1007/s00162-009-0142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0142-5

Keywords

PACS

Navigation