Skip to main content

Advertisement

Log in

Effect of Schmidt number on the structure and propagation of density currents

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The results of a numerical study of two- and three-dimensional Boussinesq density currents are described. They are aimed at exploring the role of the Schmidt number on the structure and dynamics of density driven currents. Two complementary approaches are used, namely a spectral method and a finite-volume interface capturing method. They allow for the first time to describe density currents in the whole range of Schmidt number 1 ≤ Sc ≤ ∞ and Reynolds number 102 ≤ Re ≤ 104. The present results confirm that the Schmidt number only weakly influences the structure and dynamics of density currents provided the Reynolds number of the flow is large, say of O(104) or more. On the contrary low- to moderate-Re density currents are dependant on Sc as the structure of the mixing region and the front velocities are modified by diffusion effects. The scaling of the characteristic density thickness of the interface has been confirmed to behave as (ScRe)−1/2. Three-dimensional simulations suggest that the patterns of lobes and clefts are independent of Sc. In contrast the Schmidt number is found to affect dramatically (1) the shape of the current head as a depression is observed at high-Sc, (2) the formation of vortex structures generated by Kelvin–Helmholtz instabilities. A criterion is proposed for the stability of the interface along the body of the current based on the estimate of a bulk Richardson number. This criterion, derived for currents of arbitrary density ratio, is in agreement with present computed results as well as available experimental and numerical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen J.: Principles of Physical Sedimentology. George Allen and Unwin Ltd., London (1985)

    Google Scholar 

  2. Benjamin T.B.: Density urrents and related phenomena. J. Fluid Mech. 31, 209–248 (1968)

    Article  MATH  Google Scholar 

  3. Birman V., Martin J.E., Meiburg E.: The non-Boussinesq lock–exchange problem. Part 2. High-resolution simulations. J. Fluid Mech. 537, 125–144 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Birman V.K., Battandier B.A., Meiburg E., Linden P.F.: Lock–exchange flows in sloping channels. J. Fluid Mech. 577, 53–77 (2007)

    Article  MATH  Google Scholar 

  5. Bonometti T., Magnaudet J.: Transition from spherical cap to toroidal bubbles. Phys. Fluids 18, 052102 (2006)

    Article  Google Scholar 

  6. Bonometti T., Magnaudet J.: An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics. Int. J. Multiph. Flow 33, 109–133 (2007)

    Article  Google Scholar 

  7. Brenner H.: Kinematics of volume transport. Physica A 349, 11–59 (2005)

    Article  MathSciNet  Google Scholar 

  8. Cantero M., Balachandar S., Garcia M., Ferry J.: Direct numerical simulations of planar and cyindrical density currents. J. Appl. Mech. 73, 923–930 (2006)

    Article  MATH  Google Scholar 

  9. Cantero M.I., Lee J.R., Balachandar S., Garcia M.H.: On the front velocity of gravity currents. J. Fluid Mech. 586, 1–39 (2007)

    Article  MATH  Google Scholar 

  10. Canuto C., Hussaini M., Quarteroni A., Zang T.: Spectral Methods in Fluid Dynamics. Springer, Heidelberg (1988)

    MATH  Google Scholar 

  11. Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  12. Cortese T., Balachandar S.: High performance spectral simulation of turbulent flows in massively parallel machines with distributed memory. Int. J. Supercomput. Ap. 9, 187–204 (1995)

    Article  Google Scholar 

  13. Daly B., Pracht W.: Numerical study of density-current surges. Phys. Fluids 11, 15–30 (1968)

    Article  MATH  Google Scholar 

  14. Drazin P.G., Reid W.H.: Hydrodynamic Stability, 2nd edn. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  15. Fay J.: The spreads of oil slicks on a calm sea. In: Hoult, D.P.(eds) Oils in the Sea, pp. 53–63. Plenum Press, New yorkm (1969)

    Google Scholar 

  16. Grant G.B., Jagger S.F., Lea C.J.: Fires in tunnels. Philos. Trans. R. Soc. Lond. A 356, 2873–296 (1998)

    Article  Google Scholar 

  17. Gröbelbauer H.P., Fanneløp T.K., Britter R.E.: The propagation of intrusion fronts of high density ratio. J. Fluid Mech. 250, 669–687 (1993)

    Article  Google Scholar 

  18. Härtel C., Meiburg E., Necker F.: Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front spedd for slip and no-slip boundaries. J. Fluid Mech. 418, 189–212 (2000a)

    Article  MATH  MathSciNet  Google Scholar 

  19. Härtel C., Carlsson F., Thunblom M.: Analysis and direct numerical simulation of the flow at a gravity-current head. Part 2. The lobe-and-cleft instability. J. Fluid Mech. 418, 213–229 (2000b)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hoult D.: Oil spreading in the sea. Annu. Rev. Fluid Mech. 4, 341–368 (1972)

    Article  Google Scholar 

  21. Huppert H.: The propagation of two-dimensional and axisymmetric viscous density currents over a rigid horizontal surface. J. Fluid Mech. 121, 43–58 (1982)

    Article  Google Scholar 

  22. Huppert H.E.: Density currents: a personnel perspective. J. Fluid Mech. 554, 299–322 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Huppert H., Simpson J.: The slumping of gravity currents. J. Fluid Mech. 99, 785–799 (1980)

    Article  Google Scholar 

  24. Joseph D., Renardy Y.: Fundamentals of Two Fluids Dynamics. Part II. Springer, Heidelberg (1992)

    Google Scholar 

  25. Klemp J.B., Rotunno R., Skamarock W.C.: On the dynamics of density currents in a channel. J. Fluid Mech. 269, 169–198 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lowe R.J., Rottman J.W., Linden P.F.: The non-Boussinesq lock–exchange problem. Part 1. Theory and experiments. J. Fluid Mech. 537, 101–124 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Marino B., Thomas L., Linden P.: The front condition for density currents. J. Fluid Mech. 536, 49–78 (2005)

    Article  MATH  Google Scholar 

  28. Necker F., Härtel C., Kleiser L., Meiburg E.: Mixing and dissipation in particle-driven density currents. J. Fluid Mech. 545, 339–372 (2005)

    Article  MATH  Google Scholar 

  29. Ozgökmen T., Fischer P., Duan J., Iliescu T.: Three-dimensional turbulent bottom density currents from a high-order nonhydrostatic spectral element model. J. Phys. Oceanogr. 34, 2006–2026 (2004)

    Article  Google Scholar 

  30. Pawlak G., Armi L.: Mixing and entrainment in developing stratified currents. J. Fluid Mech. 424, 45–73 (2000)

    Article  MATH  Google Scholar 

  31. Ritter A.: Die fortplanzung der wasserwellen. Z. Verein. Deutsch. Ing. 36, 947–954 (1892)

    Google Scholar 

  32. Rottman J., Simpson J.: Density currents produced by instantaneous releases of a heavy fluid in a rectangular channel. J. Fluid Mech. 135, 95–110 (1983)

    Article  Google Scholar 

  33. Schmidt W.: Zur Mechanik der boen. Z. Meteorol. 28, 355–362 (1911)

    Google Scholar 

  34. Shin J., Dalziel S., Linden P.: Density currents produced by lock exchange. J. Fluid Mech. 521, 1–34 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Simpson J.: Effect of the lower boundary on the head of a gravity current. J. Fluid Mech. 53, 759–768 (1972)

    Article  Google Scholar 

  36. Simpson J.: Density Currents, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  37. Thorpe S.A.: A method of producing a shear flow in a stratified fluid. J. Fluid Mech. 32, 693–704 (1968)

    Article  Google Scholar 

  38. von Karman T.: The engineer grapples with nonlinear problems. Bull. Am. Math. Soc. 46, 615–683 (1940)

    Article  MathSciNet  Google Scholar 

  39. Zalesak S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31, 335–362 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bonometti.

Additional information

Communicated by M.Y. Hussaini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonometti, T., Balachandar, S. Effect of Schmidt number on the structure and propagation of density currents. Theor. Comput. Fluid Dyn. 22, 341–361 (2008). https://doi.org/10.1007/s00162-008-0085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-008-0085-2

Keywords

PACS

Navigation