Skip to main content
Log in

New perspectives for modelling ballistic-diffusive heat conduction

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Among the three heat conduction modes (diffusive, second sound, and ballistic propagation), the ballistic one is the most difficult to model. In the present paper, we discuss its physical interpretations and show different alternatives to its modelling. We highlight two of them: a thermo-mechanical model in which the generalized heat equation—the so-called Maxwell–Cattaneo–Vernotte equation—is coupled to thermal expansion. The other one uses internal variables in the framework of non-equilibrium thermodynamics. For the first one, we developed a numerical solution and tested it on the heat pulse experiment performed by McNelly et al. on NaF samples. For the second one, we found an analytical solution that emphasizes the role of boundary conditions. This analytical method is used to validate an earlier developed numerical code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tisza, L.: Transport phenomena in Helium II. Nature 141, 913 (1938)

    Article  ADS  Google Scholar 

  2. Landau, L.: Two-fluid model of liquid Helium II. J. Phys. USSR 5, 71 (1941)

    Google Scholar 

  3. Peshkov, V.: Second sound in Helium II. J. Phys. (Moscow), 381(8) (1944)

  4. Jackson, H.E., Walker, C.T., McNelly, T.F.: Second sound in NaF. Phys. Rev. Lett. 25(1), 26–28 (1970)

    Article  ADS  Google Scholar 

  5. Jackson, H.E., Walker, C.T.: Thermal conductivity, second sound and phonon-phonon interactions in NaF. Phys. Rev. B 3(4), 1428–1439 (1971)

    Article  ADS  Google Scholar 

  6. McNelly, T.F.: Second sound and anharmonic processes in isotopically pure Alkali-Halides. 1974. Ph.D. Thesis, Cornell University

  7. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Joseph, D.D., Preziosi, L.: Addendum to the paper on heat waves. Rev. Mod. Phys. 62(2), 375–391 (1990)

    Article  ADS  Google Scholar 

  9. Straughan, B.: Heat Waves. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  10. Dreyer, W., Struchtrup, H.: Heat pulse experiments revisited. Continuum Mech. Thermodyn. 5, 3–50 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ma, Y.: A transient ballistic-diffusive heat conduction model for heat pulse propagation in nonmetallic crystals. Int. J. Heat Mass Transf. 66, 592–602 (2013)

    Article  Google Scholar 

  12. Kovács, R., Ván, P.: Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)

    Article  Google Scholar 

  13. Cimelli, V.A., Frischmuth, K.: Determination of material functions through second sound measurements in a hyperbolic heat conduction theory. Math. Comput. Modell. 24(12), 19–28 (1996)

    Article  MATH  Google Scholar 

  14. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  15. Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl. Phys. Lett. 90(8), 083109 (2007)

    Article  ADS  Google Scholar 

  16. Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlocal effects and second sound in a non-equilibrium steady state. Phys. Rev. B 79(1), 014303 (2009)

    Article  ADS  Google Scholar 

  17. Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34(4), 299–333 (2009)

    Article  ADS  MATH  Google Scholar 

  18. Rogolino, P., Cimmelli, V.A.: Differential consequences of balance laws in extended irreversible thermodynamics of rigid heat conductors. Proc. R. Soc. A 475(2221), 20180482 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended irreversible thermodynamics. Rep. Prog. Phys. 51(8), 1105 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ván, P., Fülöp, T.: Universality in heat conduction theory—weakly nonlocal thermodynamics. Annalen der Physik (Berlin) 524(8), 470–478 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Berezovski, A., Ván, P.: Internal Variables in Thermoelasticity. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  22. Verhás, J.: Thermodynamics and Rheology. Akadémiai Kiadó-Kluwer Academic Publisher, Amsterdam (1997)

    MATH  Google Scholar 

  23. Józsa, V., Kovács, R.: Solving Problems in Thermal Engineering: A Toolbox for Engineers. Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  24. Gyarmati, I.: Non-equilibrium Thermodynamics. Springer, Berlin (1970)

    Book  Google Scholar 

  25. Sellitto, A., Cimmelli, V.A.: Heat-pulse propagation in thermoelastic systems: application to graphene. Acta Mech. 230(1), 121–136 (2019)

    Article  MathSciNet  Google Scholar 

  26. Kovács, R., Madjarević, D., Simić, S., Ván, P.: Non-equilibrium theories of rarefied gases: internal variables and extended thermodynamics. Continuum Mechanics and Thermodynamics (2020). arXiv:1812.10355

  27. Kovács, R.: On the rarefied gas experiments. Entropy 21(7), 718 (2019)

    Article  ADS  Google Scholar 

  28. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. OUP, Oxford (2009)

    Book  MATH  Google Scholar 

  29. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  30. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  31. Pavić-Čolić, M., Madjarević, D., Simić, S.: Polyatomic gases with dynamic pressure: maximum entropy principle and shock structure. arXiv:1611.04018 (2016)

  32. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376(44), 2799–2803 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kovács, R., Ván, P.: Second sound and ballistic heat conduction: NaF experiments revisited. Int. J. Heat Mass Transf. 117, 682–690 (2018)

    Article  Google Scholar 

  34. McNelly, T.F., Rogers, S.J., Channin, D.J., Rollefson, R.J., Goubau, W.M., Schmidt, G.E., Krumhansl, J.A., Pohl, R.O.: Heat pulses in NaF: onset of second sound. Phys. Rev. Lett. 24(3), 100–102 (1970)

    Article  ADS  Google Scholar 

  35. Kovács, R., Ván, P.: Models of ballistic propagation of heat at low temperatures. Int. J. Thermophys. 37(9), 95 (2016)

    Article  ADS  Google Scholar 

  36. Ván, P.: Theories and heat pulse experiments of non-Fourier heat conduction. Commun. Appl. Ind. Math. 7(2), 150–166 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Fülöp, T., Asszonyi, C., Ván, P.: Distinguished rheological models in the framework of a thermodynamical internal variable theory. Continuum Mech. Thermodyn. 27(6), 971–986 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Kovács, R., Rogolino, P.: Numerical treatment of nonlinear Fourier and Maxwell–Cattaneo–Vernotte heat transport equations. Int. J. Heat Mass Transf. 150, 119281 (2020)

    Article  Google Scholar 

  39. Lubarda, V.A.: On thermodynamic potentials in linear thermoelasticity. Int. J. Solids Struct. 41(26), 7377–7398 (2004)

    Article  MATH  Google Scholar 

  40. Fülöp, T.: Chapters in thermodynamics (2019). ftp://ftp.energia.bme.hu/pub/Alkalmazott_termodinamika_BMEGEENBGAT/. Accessed 20 Jan 2021

  41. Tóth, B.: Dual and mixed nonsymmetric stress-based variational formulations for coupled thermoelastodynamics with second sound effect. Continuum Mech. Thermodyn. 30(2), 319–345 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Frischmuth, K., Cimmelli, V.A.: Numerical reconstruction of heat pulse experiments. Int. J. Eng. Sci. 33(2), 209–215 (1995)

    Article  MATH  Google Scholar 

  43. Frischmuth, K., Cimmelli, V.A.: Hyperbolic heat conduction with variable relaxation time. J. Theor. Appl. Mech. 34(1), 57–65 (1996)

    MATH  Google Scholar 

  44. Frischmuth, K., Cimmelli, V.A.: Coupling in thermo-mechanical wave propagation in NaF at low temperature. Arch. Mech. 50(4), 703–713 (1998)

    MATH  Google Scholar 

  45. Bargmann, S., Steinmann, P.: Finite element approaches to non-classical heat conduction in solids. Comput. Model. Eng. Sci. 9(2), 133–150 (2005)

    MathSciNet  MATH  Google Scholar 

  46. Bargmann, S., Steinmann, P.: Modeling and simulation of first and second sound in solids. Int. J. Solids Struct. 45(24), 6067–6073 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432(1885), 171–194 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15(2), 253–264 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  49. Jou, D., Restuccia, L.: Caloric and entropic temperatures in non-equilibrium steady states. Physica A 460, 246–253 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Casas-Vázquez, J., Jou, D.: Temperature in non-equilibrium states: a review of open problems and current proposals. Rep. Prog. Phys. 66, 1937–2023 (2003)

    Article  ADS  Google Scholar 

  51. Sellitto, A., Cimmelli, V.A.: A continuum approach to thermomass theory. J. Heat Transf. 134(11), 112402 (2012)

    Article  Google Scholar 

  52. Guo, Y., Jou, D., Wang, M.: Macroscopic heat transport equations and heat waves in nonequilibrium states. Physica D 342, 24–31 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Saluto, D., Jou, L.: Entrance, slip, and turbulent effects in heat transport in superfluid helium across a thin layer. Zeitschrift für angewandte Mathematik und Physik 71(2), 1–15 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. Walker, C.T.: Thermal conductivity of some alkali halides containing F centers. Phys. Rev. 132(5), 1963–1975 (1963)

    Article  ADS  Google Scholar 

  55. Rieth, Á., Kovács, R., Fülöp, T.: Implicit numerical schemes for generalized heat conduction equations. Int. J. Heat Mass Transf. 126, 1177–1182 (2018)

    Article  Google Scholar 

  56. Fülöp, T., Kovács, R., Szücs, M., Fawaier, M.: Thermodynamical extension of a symplectic numerical scheme with half space and time shifts demonstrated on rheological waves in solids. Entropy 22, 155 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  57. Press, W.H.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  58. Jury, E.I.: Inners and Stability of Dynamic Systems. Wiley, Hoboken (1974)

    MATH  Google Scholar 

  59. Hu, R., Cao, B.Y.: Study on thermal wave based on the thermal mass theory. Sci. China Ser. E Technol. Sci. 52(6), 1786–1792 (2009)

    Article  ADS  MATH  Google Scholar 

  60. Zhukovsky, K.: Violation of the maximum principle and negative solutions for pulse propagation in Guyer–Krumhansl model. Int. J. Heat Mass Transf. 98, 523–529 (2016)

    Article  Google Scholar 

  61. Zhukovsky, K.V.: Exact solution of Guyer–Krumhansl type heat equation by operational method. Int. J. Heat Mass Transf. 96, 132–144 (2016)

    Article  Google Scholar 

  62. Zhukovsky, K.V.: Operational approach and solutions of hyperbolic heat conduction equations. Axioms 5(4), 28 (2016)

    Article  Google Scholar 

  63. Zhukovsky, K.V., Srivastava, H.M.: Analytical solutions for heat diffusion beyond Fourier law. Appl. Math. Comput. 293, 423–437 (2017)

    MathSciNet  MATH  Google Scholar 

  64. Kovács, R.: Analytic solution of Guyer–Krumhansl equation for laser flash experiments. Int. J. Heat Mass Transf. 127, 631–636 (2018)

    Article  Google Scholar 

  65. Mezahov-Deglin, L.P.: Thermal conductivity of pure lead crystals at low temperatures. Soviet J. Exp. Theor. Phys. 50, 369 (1979)

    ADS  Google Scholar 

  66. Mezhov-Deglin, L.P.: Possibility of observing a knudsen minimum in the thermal conductivity of insulator crystals. Sov. Phys. Sol. St. 22(6), 1018–1021 (1980)

    Google Scholar 

  67. Mezhov-Deglin, L.P., Mukhin, S.I.: Oscillations of kinks on dislocation lines in crystals and low-temperature transport anomalies as a passport of newly induced defects. Low Temp. Phys. 37(10), 806–811 (2011)

    Article  ADS  Google Scholar 

  68. Sciacca, M., Sellitto, A., Jou, D.: Transition to ballistic regime for heat transport in helium II. Phys. Lett. A 378(34), 2471–2477 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Alvarez, F.X., Jou, D.: Boundary conditions and evolution of ballistic heat transport. J. Heat Transf. 132, 012404 (2010)

    Article  Google Scholar 

  70. Alvarez, F.X., Cimmelli, V.A., Jou, D., Sellitto, A.: Mesoscopic description of boundary effects in nanoscale heat transport. Nanoscale Syst. Math. Model. Theory Appl. 1, 112–142 (2012)

    ADS  MATH  Google Scholar 

  71. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Non-linear extended thermodynamics of real gases with 6 fields. Int. J. Non-Linear Mech. 72, 6–15 (2015)

    Article  ADS  Google Scholar 

  72. Lebon, G., Cloot, A.: Propagation of ultrasonic sound waves in dissipative dilute gases and extended irreversible thermodynamics. Wave Motion 11, 23–32 (1989)

    Article  MATH  Google Scholar 

  73. Carrasi, M., Morro, A.: A modified Navier-Stokes equation, and its consequences on sound dispersion. Il Nuovo Cimento B 9, 321–343 (1972)

    Article  ADS  Google Scholar 

  74. Carrasi, M., Morro, A.: Some remarks about dispersion and absorption of sound in monatomic rarefied gases. Il Nuovo Cimento B 13, 281–289 (1973)

    Article  ADS  Google Scholar 

  75. Kovács, R., Rogolino, P., Jou, D.: When theories and experiments meet: rarefied gases as a benchmark of non-equilibrium thermodynamic models (2019) arXiv: 1912.02158

  76. Madjarević, D., Simić, S.: Entropy growth and entropy production rate in binary mixture shock waves. Phys. Rev. E 100(2), 023119 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  77. Madjarević, D.: Shock structure and temperature overshoot in macroscopic multi-temperature model of binary mixtures. In: From Particle Systems to Partial Differential Equations II, pp. 253–272. Springer (2015)

  78. Simić, S., Pavić-Čolić, M., Madjarević, D.: Non-equilibrium mixtures of gases: modelling and computation. Rivista di Matematica della Universita di Parma (2015)

  79. Szücs, M., Fülöp, T.: Analytical solution method for rheological problems of solids (2018). arXiv:1810.06350

  80. Szücs, M., Fülöp, T.: Kluitenberg–Verhás rheology of solids in the GENERIC framework. J. Non-Equilibrium Thermodyn. 44(3), 247–259 (2019)

    Article  ADS  Google Scholar 

  81. Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, Hoboken (2005)

    Book  Google Scholar 

  82. Pavelka, M., Klika, V., Grmela, M.: Multiscale Thermo-dynamics: Introduction to GENERIC. Walter de Gruyter GmbH & Co KG, Berlin (2018)

    Book  MATH  Google Scholar 

  83. Grmela, M.: Generic guide to the multiscale dynamics and thermodynamics. J. Phys. Commun. 2(3), 032001 (2018)

    Article  Google Scholar 

  84. Romero, I.: Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics: Part I: Monolithic integrators and their application to finite strain thermoelasticity. Comput. Methods Appl. Mech. Eng. 199(25–28), 1841–1858 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Romero, Ignacio: Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics: Part II: Fractional step methods. Comput. Methods Appl. Mech. Eng. 199(33–36), 2235–2248 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Shang, X., Öttinger, H.C.: Structure-preserving integrators for dissipative systems based on reversible-irreversible splitting. Proc. R. Soc. A 476(2234), 20190446 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Mátyás Szücs for valuable discussions. The research reported in this paper was supported by the grants of National Research, Development and Innovation Office—NKFIH 130378.

The research reported in this paper and carried out at BME has been supported by the NRDI Fund (TKP2020 NC, Grant No. BME-NC) based on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation and Technology. This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The authors acknowledge the financial support of the Italian Gruppo Nazionale per la Fisica Matematica (GNFM-INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rogolino.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Stability of the numerical scheme

Since the scheme that we utilize here for demonstration is at least partially explicit, we must investigate the corresponding stability properties. Following [12, 56,57,58], we use the von Neumann method and the Jury conditions, which is suitable for linear equations. However, due to the appearance of the nonlinear term \((T-T_0)\partial _xv\), we have to do first the following. Estimating the maximum of the temperature field T is making the nonlinear term to be linear with substituting a constant for T [38]. Unfortunately, it is an open mathematical question of how to make the proper estimation for T. Here, we assume that \(C=\max _{(j,n)} (T^n_j-1)\), for all x and t is 1. Next, what serves for the starting point is the discrete version of the dispersion relation, i.e. assuming the solution for the difference equations in the form of a plane wave:

$$\begin{aligned} u_j^n=\xi ^n e^{ikj\Delta x}, \end{aligned}$$
(25)

in which \(\xi \) is called growth factor; this is the amplitude of the wave and must be bounded from above for stability: \(|\xi |\le 1\). Furthermore, i is the imaginary unit, and k is the wavenumber. After substituting Eq. (25) into (15), we obtain the system of linear algebraic equations:

$$\begin{aligned} {\mathbf {M}}\cdot \left( \begin{array}{llll} T_0&\varepsilon _0&q_0&v_0 \end{array}\right) ^T =0, \end{aligned}$$
(26)

where the coefficient matrix is

$$\begin{aligned} {\mathbf {M}}= \left( \begin{array}{llll} \xi -1&{} 0 &{} \frac{\Delta t}{\Delta x} P_1\left( e^{ik\Delta x}-1\right) &{} \frac{\Delta t}{\Delta x} P_2 C \left( e^{ik\Delta x}-1\right) \\ 0 &{} \xi -1 &{}0 &{} - \frac{\Delta t}{\Delta x} \left( e^{ik\Delta x}-1\right) \\ \frac{\Delta t}{\Delta x} \frac{\lambda _d}{\tau _d} \xi \left( 1-e^{-ik\Delta x}\right) &{}0 &{}\xi -1+\frac{\Delta t}{\Delta x} &{}0\\ \frac{\Delta t}{\Delta x} \alpha \xi \left( 1-e^{-i k\Delta x}\right) &{}- \frac{\Delta t}{\Delta x} \xi \left( 1-e^{-ik\Delta x}\right) &{}0 &{}\xi -1 \end{array} \right) . \end{aligned}$$

Then the characteristic polynomial for \(\xi \) can be formally expressed as

$$\begin{aligned} p(\xi )=a_4\xi ^4+a_3\xi ^3+a_2\xi ^2+a_1\xi +a_0, \end{aligned}$$
(27)

where the coefficients are found to be

$$\begin{aligned} a_4&=1; \nonumber \\ a_3&=\frac{\Delta t \Delta x^2 - 2(\cos (k\Delta x)-1)\Delta t (P_1 \lambda _d + \tau _d + P_2 C \alpha \tau _d)\Big )}{\Delta x^2 \tau _d}-4; \nonumber \\ a_2&=\frac{4(\cos (k\Delta x)-1)^2 \Delta t^4 P_1 \lambda _d -3 \Delta x^4 (\Delta t - 2 \tau _d)}{\Delta x^4\tau _d}-\nonumber \\&-\frac{2(\cos (k\Delta x)-1)\Delta t^2 (\Delta t + \Delta t P_2 C \alpha -2 P_1 \lambda _d -2 \tau _d - 2 P_2 C \alpha \tau _d)}{\Delta x^2\tau _d};\nonumber \\ a_1&=\frac{(3\Delta t - 4 \tau _d)\Delta x^2 +2(\cos (k\Delta x)-1)\Delta t^2 \Big (\Delta t + P_2 C \alpha - P_1 \lambda _d -(1+ P_2 C \alpha \tau _d )\Big )}{\Delta x^2 \tau _d} \nonumber \\ a_0&=1-\Delta t/\tau _d. \end{aligned}$$
(28)

The roots of that characteristic polynomial can be restricted into the unit circle on a complex plane, using Jury conditions [58], i.e.

  • \(p(\xi =1) \ge 0\);

  • \(p(\xi =-1) \ge 0\);

  • \(|a_0|\le |a_4|\);

  • \(|b_0 |>|b_3|\), where \(b_k= \left| \begin{array}{cc} a_0 &{} a_{n-k} \\ a_n &{} a_k \end{array} \right| \), with \(n =4 \) and \(k=3\);

  • \(|c_0 |>|c_2|\), where \(c_k= \left| \begin{array}{cc} b_0 &{} b_{n-1-k} \\ b_{n-1} &{} b_k \end{array} \right| \), with \(n =4 \) and \(k= 2\).

Unfortunately, the analytical form of these inequalities does not allow to simplify the expressions reasonably; therefore, we decided to check them numerically. However, let us remark that the stability conditions are in agreement with the thermodynamic restrictions, including the relations between the material parameters.

Appendix B. Analytical solutions

The complete solution of Eq. (23) is split into two parts. The first one lasts until the end of the heat pulse \(\tau _\Delta \), while the next one is having a constant boundary, independently of the time.

1.1 Section I (\(0<t\le t_\Delta \))

Starting with the first section, let us assume that we can write the heat flux in the form \(q=v+w\), in which w serves to separate the time-dependent inhomogeneous boundary from v which becomes the homogeneous solution of Eq. (23), and

$$\begin{aligned} q=v+w; \quad w = \Big ( 1-\frac{x}{L} \Big ) q_0(t). \end{aligned}$$
(29)

Substituting Eq. (29) into (23), and executing the derivatives, we obtain the following inhomogeneous partial differential equation:

$$\begin{aligned} a \dddot{v}+b\ddot{v}+{\dot{v}}=v''+c{\dot{v}}''-f(x,t), \end{aligned}$$
(30)

where \(f(x,t)=a\dddot{w}+b\ddot{w}+{\dot{w}}\). Using the splitting \(v=q-w\), the initial conditions for v are not completely equal to zero, that is,

$$\begin{aligned} v(x,t=0)={\dot{v}}(x,t=0)=0, \quad \ddot{v}(x,t=0) = \frac{4\pi ^2 x}{\tau _{\Delta }^2L}. \end{aligned}$$
(31)

Applying the classical procedure of separation of variables, we seek the solution in the form \(v(x,t)=\phi (t)X(x)\), in which \(\phi (t)\) describes the time evolution, and X(x) stands for the spatial behaviour. Furthermore, following [64], we assume that the inhomogeneity f(xt) can be represented in the space spanned by the eigenfunctions of Laplacian operator. Thus, we determine the eigenspace for the homogeneous part (\(f(x,t)=0\)),

$$\begin{aligned} \frac{a\dddot{\phi }+b\ddot{\phi }+{\dot{\phi }}}{\phi +c{\dot{\phi }}}=\frac{X''}{X}, \end{aligned}$$
(32)

where \(X''/X = \beta \) yields the eigenvalues and the eigenfunctions, with the homogeneous boundaries \(X(0)=X(L)=0\):

$$\begin{aligned} X_n(x)=\sin (\sqrt{\beta _n}x), \end{aligned}$$
(33)

with \(\beta _n = \Big ( \frac{n\pi }{L}\Big )^2\) being the eigenvalues. Then, exploiting the linearity of Eq. (23), v(xt) reads

$$\begin{aligned} v(x,t)=\sum _{n=1}^{\infty } \phi _n(t)\sin \Big (\frac{n\pi }{L}x\Big ). \end{aligned}$$
(34)

Now, we can substitute Eq. (34) into (30):

$$\begin{aligned} \sum _{n=1}^{\infty }\Big [ a\dddot{\phi }_n + b \ddot{\phi }_n + (1+c\beta _n){\dot{\phi }}_n + \beta _n \phi _n \Big ]\sin \Big ( n\pi \frac{x}{L}\Big ) = -f(x,t), \end{aligned}$$
(35)

which equation requires the Fourier sin series expansion of f(xt), i.e. \(f(x,t)=\sum _{n=1}^{\infty }f_n(t)\sin \Big ( n\pi \frac{x}{L}\Big )\), and \(f_n(t)\) is expressed using Eqs. (24) and (29):

$$\begin{aligned}&{\displaystyle f_n(t)=\frac{2}{L}\Bigg [\Big (\frac{2\pi }{\tau _{\Delta }} -a \frac{8\pi ^3}{\tau _{\Delta }^3}\Big ) \sin \Big ( 2\pi \frac{t}{\tau _{\Delta }}\Big ) + b\frac{4\pi ^2}{\tau _{\Delta }^2}\cos \Big ( 2\pi \frac{t}{\tau _{\Delta }}\Big ) \Bigg ] }\\ \nonumber&\quad {\displaystyle \times \int _{0}^{L} \Big ( 1-\frac{x}{L}\Big ) \sin \Big ( \frac{n\pi }{L}x\Big ) \text {d}x. } \end{aligned}$$
(36)

After integration and simplification, we obtain the nth term as follows:

$$\begin{aligned} f_n(t) = \frac{2}{n\pi }\Bigg [ \Big ( \frac{2\pi }{\tau _{\Delta }}-\frac{8a\pi ^3}{\tau _{\Delta }^3}\Big ) \sin \Big ( 2\pi \frac{t}{\tau _{\Delta }} \Big ) + \frac{4b\pi ^2}{\tau _{\Delta }^2}\cos \Big ( 2\pi \frac{t}{\tau _{\Delta }}\Big ) \Bigg ]. \end{aligned}$$
(37)

Now, using Eq. (37), Eq. (35) shall lead to the solution of the time evolution for v, i.e. \(\phi _n(t)\) is prescribed as

$$\begin{aligned} a \dddot{\phi }_n +b\ddot{\phi }_n+(1+c\beta _n){\dot{\phi }}_n+\beta _n\phi _n=-f_n(t), \end{aligned}$$
(38)

and its general solution is

$$\begin{aligned} \phi _n = Y_{1_n} e^{x_1 t} + Y_{2_n} e^{x_2 t} + Y_{3_n} e^{x_3 t} + A \sin (g t) + B \cos (g t), \end{aligned}$$
(39)

where \(x_{1,2,3}\) are the roots of the characteristic polynomial \(ax^3+bx^2+(1+c\beta )x+\beta =0\), \(g=2\pi / \tau _{\Delta }\), and \(A, \ B\) are the parameters of the particular solution \(\phi _p\). Now substituting \(\phi _p=A\sin (gt)+B\cos (gt)\) into Eq. (38),

$$\begin{aligned} a \dddot{\phi }_p + b \ddot{\phi }_p + (1+c\beta _n){\dot{\phi }}_p+\beta _n\phi _p = K_1 \sin (gt) + K_2\cos (gt), \end{aligned}$$
(40)

with

$$\begin{aligned} K_1 = -\frac{2}{n \pi }\Bigg ( \frac{2\pi }{\tau _{\Delta }} - \frac{8a\pi ^3}{\tau _{\Delta }^3} \Bigg ); \quad K_2 = - \frac{2}{n\pi }\frac{4b\pi ^2}{\tau _{\Delta }^2}, \end{aligned}$$
(41)

as well as

$$\begin{aligned} -aAg^3-bBg^2+A(1+\beta _nc)g+\beta _n B&=K_2, \nonumber \\ aBg^3-bAg^2-Bg(1+\beta _nc)+\beta _n A&=K_1, \end{aligned}$$
(42)

which system gives the expressions for A and B. In order to determine the coefficients \(Y_{1_n,2_n,3_n}\), we must take the initial conditions into account:

$$\begin{aligned} \phi (0)&= Y_{1_n}+Y_{2_n}+Y_{3_n}+B=0, \nonumber \\ {\dot{\phi }}(0)&= x_1Y_{1_n}+x_2Y_{2_n}+x_3Y_{3_n}+Ag=0, \nonumber \\ \ddot{\phi }(0)&= x_1^2Y_{1_n}+x_2^2Y_{2_n}+x_3^2Y_{3_n}-Bg^2=\frac{4\pi ^2 x}{\tau _{\Delta }^2L}. \end{aligned}$$
(43)

Formally, we obtained the solution of the heat flux q for the first session that lasts until \(\tau _\Delta \),

$$\begin{aligned} q_I(x,t)= & {} \sum _{n=1}^{\infty }\Big ( Y_{1_n} e^{x_1 t} + Y_{2_n} e^{x_2 t} + Y_{3_n} e^{x_3 t} + A \sin (g t) + B \cos (g t) \Big ) \sin (\frac{n\pi }{L}x) \nonumber \\&+ \Big (1-\frac{x}{L} \Big ) q_0(t) . \end{aligned}$$
(44)

We can use this expression to reconstruct the temperature field, utilizing the balance of internal energy:

$$\begin{aligned}&{\displaystyle T_I(x,t) =\frac{t}{L\tau _{\Delta }} - \frac{1}{2\pi L}\sin (gt) } \nonumber \\&\quad {\displaystyle - \sum _{n=1}^{\infty }\frac{n\pi \cos (\frac{n\pi }{L}x)}{L \tau _{\Delta }} \Bigg ( \Bigg [ \sum _{j=1}^3 \frac{e^{x_jt}-1}{x_j}Y_{jn} \Bigg ] + \frac{B_n}{g}\sin (gt)+\frac{A_n-A_n\cos (gt)}{g}\Bigg )}. \end{aligned}$$
(45)

1.2 Section II (\(t \ge \tau _\Delta \))

Now turning our attention to the second session of the solution (in which \(t\ge \tau _\Delta \)), we introduce a new variable for time such as \({\tilde{t}}=t-\tau _{\Delta }\) for convenience. Thus, the initial conditions become

$$\begin{aligned} q_{II}(x,{\tilde{t}}=0)&= q_I(x,t=\tau _{\Delta }), \nonumber \\ {\dot{q}}_{II}(x,{\tilde{t}}=0)&= {\dot{q}}_I(x,t=\tau _{\Delta }), \nonumber \\ \ddot{q}_{II}(x,{\tilde{t}}=0)&= \ddot{q}_I(x,t=\tau _{\Delta }). \end{aligned}$$
(46)

Since the inhomogeneity of f(xt) disappears as \(w\equiv 0\), we can immediately begin with

$$\begin{aligned} a \dddot{\gamma }_n +b\ddot{\gamma }_n+(1+c\beta _n){\dot{\gamma }}_n+\beta _n\gamma _n=0. \end{aligned}$$
(47)

The roots of the characteristic polynomial \(x_{1,2,3}\) remain unchanged, and the general solution reads

$$\begin{aligned} \gamma _n(t)=C_{1_n}e^{x_1t}+C_{2_n}e^{x_2t}+C_{3_n}e^{x_3t}, \end{aligned}$$
(48)

in which the unknown \(C_{1,2,3}\) coefficients are determined using the initial conditions (46):

$$\begin{aligned} C_{1_n}+C_{2_n}+C_{3_n}=\phi _n(t=\tau _{\Delta }), \nonumber \\ x_1C_{1_n}+x_2C_{2_n}+x_3C_{3_n}={\dot{\phi }}_n(t=\tau _{\Delta }), \nonumber \\ x_1^2C_{1_n}+x_2^2C_{2_n}+x_3^2C_{3_n}=\ddot{\phi }_n(t=\tau _{\Delta }). \end{aligned}$$
(49)

Again, the temperature distribution is recovered using the balance equation.

$$\begin{aligned} T_{II}(x,{\tilde{t}}) = - \sum _{n=1}^{\infty }\frac{n\pi \cos (\frac{n\pi }{L}x)}{L \tau _{\Delta }} \Bigg [ \sum _{j=1}^3 \frac{e^{x_j{\tilde{t}}}-1}{x_j}C_{j_n} \Bigg ] + T_{I}(x,t=\tau _{\Delta } ) , \end{aligned}$$
(50)

where \({\tilde{t}}=t-\tau _{\Delta }\), and \(T_{I}(x,t=\tau _{\Delta })\) is defined by Eq. (45).

1.3 Calculating Q(xt)

The heat current density Q(xt) can be calculated from Eq. (18) using the previously determined T(xt) and q(xt) functions. The solution again is divided into two parts, namely \(Q_{I}(x,t)\) and \(Q_{II}(x,t)\), where the \(T_{I,II}(x,t)\) and \(q_{I,II}(x,t)\) functions are used accordingly. The necessary derivatives needed for Q(xt) are the following:

$$\begin{aligned} \partial _t q_{I}(x,{\hat{t}})= & {} \sum _{n=1}^{\infty } \Bigg [ \sum _{k=1}^{3}Y_{kn}x_{k}e^{x_k t} + A_ng\cos (gt) - B_ng\sin (gt)\Bigg ]\sin \Big ( \frac{n\pi }{L}x\Big ) \nonumber \\&{\displaystyle + \Big ( 1-\frac{x}{L} \Big ) g \sin (gt)}, \end{aligned}$$
(51)
$$\begin{aligned} \displaystyle \partial _x T_{I}(x,{\hat{t}})= & {} \sum _{n=1}^{\infty } \frac{(n\pi )^2\sin \Big ( \frac{n\pi }{L}x \Big )}{L^2\tau _{\Delta }}\Bigg [ \sum _{k=1}^3 \frac{e^{x_k t}-1}{x_k}Y_{kn} + \frac{B_n}{g}\sin (gt) \nonumber \\&{\displaystyle + \frac{A_n-A_n\cos (gt)}{g} \Bigg ]}, \end{aligned}$$
(52)
$$\begin{aligned} \partial _t q_{II}(x,{\hat{t}})= & {} \sum _{n=1}^{\infty } \sum _{k=1}^{3}C_{kn}x_{k}e^{x_k{\hat{t}}}\sin \Big ( \frac{n\pi }{L}x\Big ), \end{aligned}$$
(53)
$$\begin{aligned} \partial _x T_{II}(x,{\hat{t}})= & {} \sum _{n=1}^{\infty } \frac{(n\pi )^2\sin \Big ( \frac{n\pi }{L}x \Big )}{L^2\tau _{\Delta }}\Bigg [ \sum _{k=1}^3 \frac{e^{x_k {\hat{t}}}-1}{x_k}C_{kn} + \sum _{k=1}^3 \frac{e^{x_k \tau _{\Delta }}-1}{x_k}Y_{kn} \nonumber \\&+ \frac{B_n}{g}\sin (g\tau _{\Delta }) + \frac{A_n-A_n\cos (g\tau _{\Delta })}{g} \Bigg ]. \end{aligned}$$
(54)

Putting everything together the heat flux density for the first time interval is:

$$\begin{aligned} Q_{I}(x,t)=\frac{1}{\kappa } \sum _{n=1}^{\infty } \frac{L\cos \Big ( \frac{n\pi }{L}x\Big )}{n\pi }{\mathcal {F}}(A_n,B_n,t,x_k) -\Big ( x-\frac{x^2}{2L}\Big )\Big ( 1-\cos (gt)+\tau _qg\sin (gt)\Big ), \end{aligned}$$
(55)

where

$$\begin{aligned} {\mathcal {F}}(A_n,B_n,t,x_k)= & {} A_n\sin (gt)+B_n\cos (gt)+\sum _{k=1}^3 Y_{kn}e^{x_kt} + \tau _q A_ng\cos (gt)-\tau _qB_ng\sin (gt) \nonumber \\&+ \tau _q\sum _{k=1}^3Y_{kn}x_k e^{x_kt} + \frac{n^2\pi ^2 B_n}{L^2 g}\sin (gt) + \frac{n^2\pi ^2}{L^2}\frac{A_n-A_n \cos (gt)}{g} +\frac{n^2\pi ^2}{L^2}\sum _{k=1}^3 \frac{e^{x_kt}-1}{x_k}Y_{kn} . \end{aligned}$$
(56)

Similarly, the heat flux density for the second interval will be:

$$\begin{aligned} Q_{II}(x,t) = \frac{1}{\kappa }\sum _{n=1}^{\infty }\frac{L\cos \Big ( \frac{n\pi }{L}x\Big )}{n\pi }{\mathcal {G}}(A_n,B_n,x_k,{\hat{t}},\tau _{\Delta }), \end{aligned}$$
(57)

in which

$$\begin{aligned} {\mathcal {G}}(A_n,B_n,x_k,{\hat{t}},\tau _{\Delta })= & {} \sum _{k=1}^{3}C_{kn}e^{x_k{\hat{t}}} + \tau _q\sum _{k=1}^3 C_{kn}x_ke^{x_k{\hat{t}}}+\frac{n^2\pi ^2}{L^2}\Bigg [\sum _{k=1}^3 \frac{e^{x_k{\hat{t}}}-1}{x_k}C_{kn} \nonumber \\&+ \sum _{k=1}^3 \frac{e^{x_k\tau _{\Delta }}-1}{x_k}Y_{kn} + \frac{B_n}{g}\sin (g\tau _{\Delta })+ \frac{A_n-A_n\cos (g\tau _{\Delta })}{g} \Bigg ] . \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balassa, G., Rogolino, P., Rieth, Á. et al. New perspectives for modelling ballistic-diffusive heat conduction. Continuum Mech. Thermodyn. 33, 2007–2026 (2021). https://doi.org/10.1007/s00161-021-00982-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-00982-9

Keywords

Navigation