Skip to main content
Log in

A canonical rate-independent model of geometrically linear isotropic gradient plasticity with isotropic hardening and plastic spin accounting for the Burgers vector

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose a canonical variational framework for rate-independent phenomenological geometrically linear gradient plasticity with plastic spin. The model combines the additive decomposition of the total distortion into non-symmetric elastic and plastic distortions, with a defect energy contribution taking account of the Burgers vector through a dependence only on the dislocation density tensor \({{\,\mathrm{Curl}\,}}p\) giving rise to a non-symmetric nonlocal backstress, and isotropic hardening response only depending on the accumulated equivalent plastic strain. The model is fully isotropic and satisfies linearized gauge invariance conditions, i.e., only true state variables appear. The model satisfies also the principle of maximum dissipation which allows to show existence for the weak formulation. For this result, a recently introduced Korn’s inequality for incompatible tensor fields is necessary. Uniqueness is shown in the class of strong solutions. For vanishing energetic length scale, the model reduces to classical elasto-plasticity with symmetric plastic strain \(\mathbf \varepsilon _p\) and standard isotropic hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis, E.C.: On the microstructural origin of certain inelastic models. ASME J. Eng. Mater. Technol. 106, 326–330 (1984)

    Google Scholar 

  2. Aifantis, E.C.: The physics of plastic deformation. Int. J. Plasticity 3, 211–247 (1987)

    MATH  Google Scholar 

  3. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992)

    MATH  Google Scholar 

  4. Aifantis, E.C.: Gradient plasticity. In: Lemaitre, J. (ed.) Handbook of Materials Behavior Models, pp. 281–297. Academic Press, New York (2001)

    Google Scholar 

  5. Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003)

    Google Scholar 

  6. Aifantis, E.C.: Gradient material mechanics: perspectives and prospects. Acta Mech. 225, 999–1012 (2014)

    MathSciNet  Google Scholar 

  7. Alber, H.D.: Materials with Memory. Initial-Boundary Value Problems for Constitutive Equations with Internal Variables. volume 1682 of Lecture Notes in Mathematics. Springer, Berlin (1998)

  8. Anand, L., Gurtin, M.E., Reddy, B.D.: The stored energy of cold work, thermal annealing, and other thermodynamic issues in single crystal plasticity at small length scales. Int. J. Plasticity 64, 1–25 (2015)

    Google Scholar 

  9. Bardella, L.: A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 54, 128–160 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Bardella, L.: Some remarks on the strain gradient crystal plasticity modelling, with particular reference to the material length scale involved. Int. J. Plasticity 23, 296–322 (2007)

    MATH  Google Scholar 

  11. Bardella, L.: A comparison between crystal and isotropic strain gradient plasticity theories with accent on the role of the plastic spin. Eur. J. Mech. A Solids 28(3), 638–646 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Bardella, L.: Size effects in phenomenological strain gradient plasticity constitutively involving the plastic spin. Int. J. Eng. Sci. 48(5), 550–568 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Bardella, L., Giacomini, A.: Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity. J. Mech. Phys. Solids 56, 2906–2934 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Bardella, L., Panteghini, A.: Modelling the torsion of thin metal wires by distortion gradient plasticity. J. Mech. Phys. Solids 78, 467–492 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Bargmann, S., Reddy, B.D., Klusemann, B.: A computational study of a model of single-crystal strain gradient viscoplasticity with a fully-interactive hardening relation. Int. J. Solids Struct. 51(15–16), 2754–2764 (2014)

    Google Scholar 

  16. Bauer, S., Neff, P., Pauly, D., Starke, G.: New Poincaré-type inequalities. Comptes Rendus Math. 352(4), 163–166 (2014)

    Google Scholar 

  17. Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-Div-and DevSym-devCurl-inequalities for incompatible square tensor fields with mixed boundary conditions. ESAIM Control Optim. Calc. Var. 22(1), 112–133 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Berdichevsky, V.L., Sedov, L.I.: Dynamic theory of continuously distributed dislocations. Its relation to plasticity theory. PMM 31(6), 981–1000 (1967) (English translation: J. Appl. Math. Mech. (PMM), 989–1006, (1967))

  19. Berdichevsky, V.L.: Continuum theory of dislocations revisited. Cont. Mech. Thermod. 18, 195–222 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. Ser. A. 458, 299–317 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Chiricotto, M., Giacomelli, L., Tomassetti, G.: Dissipative scale effects in strain-gradient plasticity: the case of simple shear. SIAM J. Appl. Math. 76(2), 688–704 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Dafalias, Y.F.: The plastic spin. J. Appl. Mech. 52, 865–871 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Dal Maso, G., De Simone, A., Mora, M.G.: Quasistatic evolution problems for linearly elastic–perfectly plastic material. Arch. Ration. Mech. Anal. 180, 237–291 (2006)

    MathSciNet  MATH  Google Scholar 

  24. De Wit, R.: A view of the relation between the continuum theory of lattice defects and non-Euclidean geometry in the linear approximation. Int. J. Eng. Sci. 19, 1475–1506 (1981)

    MathSciNet  MATH  Google Scholar 

  25. Djoko, J.K., Ebobisse, F., McBride, A.T., Reddy, B.D.: A discontinuous Galerkin formulation for classical and gradient plasticity. Part 1: formulation and analysis. Comput. Methods Appl. Mech. Eng. 196, 3881–3897 (2007)

  26. Djoko, J.K., Ebobisse, F., McBride, A.T., Reddy, B.D.: A discontinuous Galerkin formulation for classical and gradient plasticity. Part 2: algorithms and numerical analysis. Comput. Methods Appl. Mech. Eng. 197, 1–22 (2007)

  27. Ebobisse, F., McBride, A.T., Reddy, B.D.: On the mathematical formulations of a model of gradient plasticity. In: Reddy, B.D. (ed.) IUTAM-Symposium on Theoretical, Modelling and Computational Aspects of Inelastic Media in Cape Town, pp. 117–128. Springer, Berlin (2008)

    Google Scholar 

  28. Ebobisse, F., Neff, P.: Existence and uniqueness in rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin. Math. Mech. Solids 15, 691–703 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Ebobisse, F., Neff, P., Aifantis, E.C.: Existence result for a dislocation based model of single crystal gradient plasticity with isotropic or linear kinematic hardening. Quart. J. Mech. Appl. Math. 71, 99–124 (2018)

    MathSciNet  Google Scholar 

  30. Ebobisse, F., Neff, P., Forest, S.: Well-posedness for the microcurl model in both single and polycrystal gradient plasticity. Int. J. Plasticity 107, 1–26 (2018)

    Google Scholar 

  31. Ebobisse, F., Neff, P., Reddy, B.D.: Existence results in dislocation based rate-independent isotropic gradient plasticity with kinematical hardening and plastic spin: the case with symmetric local backstress. http://arxiv.org/pdf/1504.01973.pdf (in review)

  32. Ebobisse, F., Neff, P.: A fourth order gauge-invariant gradient plasticity model for polycrystals based on Kröner’s incompatibility tensor. http://arxiv.org/pdf/1706.08770.pdf (in review)

  33. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. In: Hutchinson, J.W., Wu, T.Y. (eds.) Advances in Applied Mechanics, vol. 33, pp. 295–361. Academic Press, New York (1997)

    Google Scholar 

  34. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    ADS  MATH  Google Scholar 

  35. Fleck, N.A., Willis, J.R.: A mathematical basis for strain-gradient plasticity theory. Part I: scalar plastic multiplier. J. Mech. Phys. Solids 57, 161–177 (2009)

  36. Fleck, N.A., Willis, J.R.: A mathematical basis for strain-gradient plasticity theory. Part II: tensorial plastic multiplier. J. Mech. Phys. Solids 57, 1045–1057 (2009)

  37. Forest, S., Guéninchault, N.: Inspection of free-energy functions in gradient crystal plasticity. Acta Mech. Sinica 29, 763–772 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Francfort, G., Giacomini, A.: Small strain heterogeneous elastoplasticity revisited. Commun. Pure Appl. Math. 65(9), 1185–1241 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Francfort, G., Giacomini, A., Marigo, J.: The elasto-plasticity exquisite corpse: a Suquet legacy. J. Mech. Phys. Solids i97, 125–139 (2016)

  40. Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity-I. Theory J. Mech. Phys. Solids 47, 1239–1263 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Ghiba, I.-D., Neff, P., Madeo, A., Münch, I.: A variant of the linear isotropic indeterminate couple stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and complete traction boundary conditions. Math. Mech. Solids 22(6), 1221–1266 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Giacomini, A.: On the energetic formulation of the Gurtin and Anand model in strain gradient plasticity. Discrete Contin. Dyn. Syst. Ser. B 17, 527–552 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Giacomini, A., Lussardi, L.: A quasistatic evolution for a model in strain gradient plasticity. SIAM J. Math. Anal. 40(3), 1201–1245 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Gudmundson, P.: A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Gurtin, M.E.: A gradient theory of single-crystal visco-plasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Gurtin, M.E.: A gradient theory of small deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. J. Mech. Phys. Solids 52, 2545–2568 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Gurtin, M.E., Needleman, A.: Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector. J. Mech. Phys. Solids 53, 1–31 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Gurtin, M.E., Anand, L.: A theory of strain gradient plasticity for isotropic, plastically irrotational materials. Part I: small deformations. J. Mech. Phys. Solids 53, 1624–1649 (2005)

  49. Gurtin, M.E., Anand, L.: A theory of strain gradient plasticity for isotropic, plastically irrotational materials. Part II: finite deformation. Int. J. Plasticity 21(12), 2297–2318 (2005)

  50. Gurtin, M.E., Anand, L.: Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  52. Gurtin, M.E., Reddy, B.D.: Gradient single-crystal plasticity within a von Mises-Hill framework based on a new formulation of self- and latent-hardening relations. J. Mech. Phys. Solids 68, 134–160 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Hackl, K.: Generalized standard media and variational principles in classical and finite strain elastoplasticity. J. Mech. Phys. Solids 45, 667–688 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Hackl, K., Fischer, F.D.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A 464(2089), 117–132 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Hackl, K., Heinz, S., Mielke, A.: A model for the evolution of laminates in finite-strain elastoplasticity. Zeit. f. Angew. Math. Mech. 92(11–12), 888–909 (2012)

    MathSciNet  MATH  Google Scholar 

  56. Hackl, K., Hoppe, U., Kochmann, D.M.: Variational modeling of microstructures in plasticity. In: Schröder, J., Hackl, K. (eds.) Plasticity and Beyond, pp. 65–129. Springer, Vienna (2014)

    Google Scholar 

  57. Hackl, K., Kochmann, D.M.: Relaxed potentials and evolution equations for inelastic microstructures. In: Reddy, B.D. (ed.) IUTAM-Symposium on Theoretical, Modelling and Computational Aspects of Inelastic Media in Cape Town, pp. 27–39. Springer, Berlin (2008)

    Google Scholar 

  58. Hackl, K., Fischer, F., Svoboda, J.: A study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials. Proc. R. Soc. A 467(2128), 1186–1196 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Hackl, K., Fischer, F., Svoboda, J.: A study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials, addendum. Proc. R. Soc. A 467(2132), 2422–2426 (2011)

    ADS  MATH  Google Scholar 

  60. Han, W., Reddy, B.D.: Plasticity: Mathematical Theory and Numerical Analysis. Springer, New York (1999)

    MATH  Google Scholar 

  61. He, Q.-C., Vallée, C., Lerintiu, C.: Explicit expressions for the plastic normality-flow rule associated to the Tresca yield criterion. Z. Angew. Math. Phys. 56, 357–366 (2005)

    MathSciNet  MATH  Google Scholar 

  62. Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, New York (1950)

    MATH  Google Scholar 

  63. Hill, R.: A variational principle of maximum plastic work in classical plasticity. Q. J. Mech. Appl. Math. 1(1), 18–28 (1948)

    MathSciNet  MATH  Google Scholar 

  64. Kochmann, D.M., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Contin. Mech. Thermodyn. 23, 63–85 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Kraynyukova, N., Neff, P., Nesenenko, S., Chełmiński, K.: Well-posedness for dislocation based gradient visco-plasticity with isotropic hardening. Nonlinear Anal. Real World Appl. 25, 96–111 (2015)

    MathSciNet  MATH  Google Scholar 

  66. Krishnan, J., Steigmann, D.J.: A polyconvex formulation of isotropic elastoplasticity. IMA J. Appl. Math. 79, 722–738 (2014)

    MathSciNet  MATH  Google Scholar 

  67. Kröner, E.: Continuum theory of defects. In: Balian, R., et al. (eds.) Les Houches, Session 35, 1980 - Physique des defauts, pp. 215–315. North-Holland, New York (1981)

    Google Scholar 

  68. Lazar, M.: Dislocation theory as a 3-dimensional translation gauge theory. Ann. Phys. (Leipzig) 9, 461–473 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  69. Lazar, M.: An elastoplastic theory of dislocations as a physical field theory with torsion. J. Phys. A Math. Gen. 35, 1983–2004 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  70. Lazar, M., Anastassiadis, C.: The gauge theory of dislocations: conservation and balance laws. Philos. Mag. 88, 1673–1699 (2008)

    ADS  Google Scholar 

  71. Lubliner, J.: Plasticity Theory. Dover Publications, Mineola (2008)

    MATH  Google Scholar 

  72. Lucchesi, M., Šilhavý, M.: Il’yushin’s conditions in non-isothermal plasticity. Arch. Ration. Mech. Anal. 113, 121–163 (1991)

    MATH  Google Scholar 

  73. Mainik, A., Mielke, A.: Existence results for energetic models for rate-independent systems. Calc. Var. Partial. Differ. Equ. 22(1), 72–99 (2005)

    MathSciNet  MATH  Google Scholar 

  74. Mandel, J.: Plasticité Classique et Viscoplasticité. Courses and Lectures, No 97, International Center for Mechanical Sciences, Udine. Springer, Berlin (1971)

  75. Mandel, J.: Equations constitutives et directeurs dans les milieux plastiques et viscoplasticques. Int. J. Solids Struct. 9, 725–740 (1973)

    MATH  Google Scholar 

  76. Martin, J.: Plasticity: Fundamental and General Results. MIT Press, Cambridge (1975)

    Google Scholar 

  77. Menzel, M., Steinmann, P.: On the formulation of higher gradient plasticity for single and polycrystals. J. Phys. Fr. 8, 239–247 (1998)

    Google Scholar 

  78. Menzel, M., Steinmann, P.: On the continuum formulation of higher gradient plasticity for single and polycrystals. J. Mech. Phys. Solids, 48:1777–1796, 2000. Erratum: 49:1179-1180, 2001

  79. Mielke, A.: Analysis of energetic models for rate-independent materials. In Li, T. (ed.) Proceedings of the International Congress of Mathematicians 2002, Beijing, III, pp. 817–828. Higher Education Press (2002)

  80. Mielke, A.: Evolution of rate-independent systems. In: Dafermos, A., Feireisl, E. (eds.) Evolution equations, vol. II, Handbook of Differential Equations, pp. 461–559. Elsevier/North-Holland, Amsterdam (2005)

  81. von Mises, R.: Mechanik der plastischen Formänderung von Kristallen Zeit. Angew. Math. Mech. 8, 161 (1928)

    MATH  Google Scholar 

  82. Moreau, J.J.: Application of convex analysis to the treatment of elastoplastic systems. In: Germain, P., Nayroles, B. (eds.) Applications of Methods of Functional Analysis to Problems in Mechanics. Springer, Berlin (1976)

    Google Scholar 

  83. Mühlhaus, H.B., Aifantis, E.C.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28(7), 845–853 (1991)

    MathSciNet  MATH  Google Scholar 

  84. Neff, P.: On Korn’s first inequality with non-constant coefficients. Proc. R. Soc. Edinb. Sect. A 132(1), 221–243 (2002)

    MathSciNet  MATH  Google Scholar 

  85. Neff, P.: Remarks on invariant modelling in finite strain gradient plasticity. Tech. Mech. 28(1), 13–21 (2008)

    MathSciNet  Google Scholar 

  86. Neff, P.: Uniqueness of strong solutions in infinitesimal perfect gradient plasticity. In: Reddy, B.D. (ed.) IUTAM-Symposium on Theoretical, Modelling and Computational Aspects of Inelastic Media in Cape Town, pp. 129–140. Springer, Berlin (2008)

    Google Scholar 

  87. Neff, P., Münch, I.: Curl bounds Grad on SO(3). ESAIM Control Optim. Calc. Var. 14(1), 148–159 (2008)

    MathSciNet  MATH  Google Scholar 

  88. Neff, P., Chełmiński, K., Alber, H.D.: Notes on strain gradient plasticity. Finite strain covariant modelling and global existence in the infinitesimal rate-independent case. Math. Mod. Methods Appl. Sci. 19(2), 1–40 (2009)

  89. Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Cont. Mech. Therm. 26, 639–681 (2014)

    MathSciNet  MATH  Google Scholar 

  90. Neff, P., Ghiba, I.-D., Lazar, M., Madeo, A.: The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations. Q. J. Mech. Appl. Math. 68, 53–84 (2015)

    MathSciNet  MATH  Google Scholar 

  91. Neff, P., Pauly, D., Witsch, K.J.: On a canonical extension of Korn’s first and Poincaré’s inequalities to H(Curl) motivated by gradient plasticity with plastic spin. Comp. Rend. Math. 349(23–24), 1251–1254 (2011)

    MATH  Google Scholar 

  92. Neff, P., Pauly, D., Witsch, K.J.: On a canonical extension of Korn’s first and Poincaré’s inequalities to H(Curl). J. Math. Sci. (NY) 185(5), 721–727 (2012)

    MATH  Google Scholar 

  93. Neff, P., Pauly, D., Witsch, K.J.: Maxwell meets Korn: a new coercive inequality for tensor fields with square integrable exterior derivatives. Math. Methods Appl. Sci. 35(1), 65–71 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  94. Neff, P., Pauly, D., Witsch, K.J.: Poincaré meets Korn via Maxwell: extending Korn’s first inequality to incompatible tensor fields. J. Differ. Equ. 258(4), 1267–1302 (2014)

    ADS  MATH  Google Scholar 

  95. Neff, P., Sydow, A., Wieners, C.: Numerical approximation of incremental infinitesimal gradient plasticity. Int. J. Numer. Methods Eng. 77(3), 414–436 (2009)

    MathSciNet  MATH  Google Scholar 

  96. Nesenenko, S., Neff, P.: Well-posedness for dislocation based gradient visco-plasticity I: subdifferential case. SIAM J. Math. Anal. 44(3), 1695–1712 (2012)

    MATH  Google Scholar 

  97. Nesenenko, S., Neff, P.: Well-posedness for dislocation based gradient visco-plasticity II: general non-associative monotone plastic flow. Math. Mech. Complex Syst. 1(2), 149–176 (2013)

    MATH  Google Scholar 

  98. Nguyen, Q.-S.: Variational principles in the theory of gradient plasticity. C. R. Mecanique 339, 743–750 (2011)

    ADS  Google Scholar 

  99. Nye, J.F.: Some geometrical relations in dislocated solids. Acta Metall. 1, 153–162 (1953)

    Google Scholar 

  100. Onat, E.T.: The notion of state and its implications in thermodynamics of inelastic solids. In: Parkus, H., Sedov, L.I. (eds.) Proceedings of the IUTAM Symposium on Irreversible Aspects of the Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids, Vienna, pp. 292–314. Springer, Wien (1996)

  101. Ohno, N., Okumura, D.: Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations. J. Mech. Phys. Solids 55, 1879–1898 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  102. Ortiz, M., Repetto, E.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  103. Panteghini, A., Bardella, L.: On the finite element implementation of higher-order gradient plasticity, with focus on theories based on plastic distortion incompatibility. Comput. Methods Appl. Mech. Eng. 310, 840–865 (2016)

    ADS  MathSciNet  Google Scholar 

  104. Panteghini, A., Bardella, L.: On the role of higher-order conditions in distortion gradient plasticity. J. Mech. Phys. Solids 118, 293–321 (2018)

    ADS  MathSciNet  Google Scholar 

  105. Poh, L.H.: Scale transition of a higher order plasticity model–a consistent homogenization theory from meso to macro. J. Mech. Phys. Solids 61, 2692–2710 (2013)

    ADS  MathSciNet  Google Scholar 

  106. Poh, L.H., Peerlings, R.H.J., Geers, M.G.D., Swaddiwudhipong, S.: An implicit tensorial gradient plasticity model–formulation and comparison with a scalar gradient model. Int. J. Solids Struct. 48(18), 2595–2604 (2011)

    Google Scholar 

  107. Poh, L.H., Peerlings, R.H.J.: The plastic rotation effect in an isotropic gradient plasticity model for applications at the meso scale. Int. J. Solids Struct. 78–79, 57–69 (2016)

    Google Scholar 

  108. Polizzotto, C.: A link between the residual-based gradient plasticity theory and the analogous theories based on the virtual work principle. Int. J. Plasticity 25, 2169–2180 (2009)

    Google Scholar 

  109. Reddy, B.D.: The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 1: polycrystalline plasticity. Cont. Mech. Therm. 23, 527–549 (2011)

  110. Reddy, B.D.: The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity. Cont. Mech. Therm. 23, 551–572 (2011)

  111. Reddy, B.D., Ebobisse, F., McBride, A.: Well-posedness of a model of strain gradient plasticity for plastically irrotational materials. Int. J. Plasticity 24, 55–73 (2008)

    MATH  Google Scholar 

  112. Reddy, B.D., Wieners, C., Wohlmuth, B.: Finite element analysis and algorithms for single-crystal strain-gradient plasticity. Int. J. Numer. Methods Eng. 90, 784–804 (2014)

    MathSciNet  MATH  Google Scholar 

  113. Rubin, M.B.: Physical reasons for abandoning plastic deformation measures in plasticity and visco-plasticity. Arch. Mech. 53, 519–539 (2001)

    MATH  Google Scholar 

  114. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  115. Steigmann, D.J., Gupta, A.: Mechanically equivalent elastic-plastic deformations and the problem of plastic spin. Theor. Appl. Mech. (Belgrade) 38, 397–417 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  116. Stölken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Google Scholar 

  117. Suquet, P.-M.: Sur un espace fonctionel pour les équations de la plasticité. Ann. Fac. Sci. Toulouse Math. (5), 1(1), 77–87 (1979)

  118. Suquet, P.-M.: Sur les équations de la plasticité: existence et regularité des solutions. J. Mécanique 20, 3–39 (1981)

    MathSciNet  MATH  Google Scholar 

  119. Svendsen, B.: Continuum thermodynamic models for crystal plasticity including the effects of geometrically necessary dislocations. J. Mech. Phys. Solids 50(25), 1297–1329 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  120. Svendsen, B., Neff, P., Menzel, A.: On constitutive and configurational aspects of models for gradient continua with microstructure. Z. Angew. Math. Mech. 89(8), 687–697 (2009)

    MathSciNet  MATH  Google Scholar 

  121. Tresca, H.E.: Mémoires sur l’écoulement des corps solides. Mém. Sav. Acad. Sci., Paris, (Sciences Mathématiques et physiques) 10, 75–135 (1872)

  122. Tsagrakis, I., Aifantis, E.C.: Recent developments in gradient plasticity–Part I: formulation and size effects. J. Eng. Mater. Technol. 124(3), 352–357 (2002)

    Google Scholar 

  123. Tsagrakis, I., Efremidis, G., Konstantinidis, A., Aifantis, E.C.: Deformation vs. flow and wavelet-based models of gradient plasticity. Int. J. Plasticity 22, 1456–1485 (2006)

  124. Zbib, H.M., Aifantis, E.C.: On the gradient-dependent theory of plasticity and shear banding. Acta Mechanica 92, 209–225 (1992)

    MATH  Google Scholar 

Download references

Acknowledgements

The research of Francois Ebobisse has been supported by the National Research Foundation (NRF) of South Africa through the Incentive Grant for Rated Researchers and the International Centre for Theoretical Physics (ICTP) through the Associateship Scheme. The first draft of this work was written at Essen (Germany) while Francois Ebobisse was visiting the Faculty of Mathematics of the University of Duisburg-Essen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Ebobisse.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebobisse, F., Hackl, K. & Neff, P. A canonical rate-independent model of geometrically linear isotropic gradient plasticity with isotropic hardening and plastic spin accounting for the Burgers vector. Continuum Mech. Thermodyn. 31, 1477–1502 (2019). https://doi.org/10.1007/s00161-019-00755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00755-5

Keywords

Navigation