Skip to main content
Log in

Comparison of thermodynamic topology optimization with SIMP

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Computationally efficient approaches to topology optimization usually include heuristic update and/or filtering schemes to overcome numerical problems such as the well-known checkerboarding phenomenon, local minima, and the associated mesh dependency. In a series of papers, Hamilton’s principle, which originates from thermodynamic material modeling, was applied to derive a model for topology optimization based on a novel conceptual structure: utilization of this thermodynamic approach resulted in an evolution equation for the local mass distribution as the update scheme during the iterative optimization process. Although this resulted in topologies comparable to those from classical optimization schemes, no direct linkage between these different approaches has yet been drawn. In this contribution, we present a detailed comparison of the new approach to the well-established SIMP approach. To this end, minor modifications of the original thermodynamic approach yield an optimization process with a numerical efficiency that is comparable to that of SIMP approaches. However, a great advantage of the new approach arises from results that are parameter- and mesh-independent, although neither filtering techniques nor gradient constraints are applied. Several 2D and 3D examples are discussed and serve as a profound basis for an extensive comparison, which also helps to reveal similarities and differences between the individual approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, J.H., Zhang, W.H., Qiu, K.P.: Bi-directional evolutionary topology optimization using element replaceable method. Comput. Mech. 40(1), 97–109 (2006). https://doi.org/10.1007/s00466-006-0087-0

    Article  MATH  Google Scholar 

  2. Huang, X., Xie, Y.M.: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput. Mech. 43(3), 393–401 (2008). https://doi.org/10.1007/s00466-008-0312-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Rajan, S.D.: Sizing, shape, and topology design optimization of trusses using genetic algorithm. J. Struct. Eng. 121(10), 1480–1487 (1995). https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1480)

    Article  Google Scholar 

  4. Hajela, P., Lee, E., Lin, C.-Y.: Topology Design of Structures. In: Ch. Genetic Algorithms in Structural Topology Optimization, pp. 117–133. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1804-0-10

  5. Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004). https://doi.org/10.1016/j.jcp.2003.09.032

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Xia, Q., Wang, M.Y.: Topology optimization of thermoelastic structures using level set method. Comput. Mech. 42(6), 837–857 (2008). https://doi.org/10.1007/s00466-008-0287-x

    Article  MATH  Google Scholar 

  7. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1–2), 227–246 (2003). https://doi.org/10.1016/S0045-7825(02)00559-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bourdin, B., Chambolle, A.: Design-dependent loads in topology optimization. ESAIM: Control Optim. Calc. Var. 9, 19–48 (2003). https://doi.org/10.1051/cocv:2002070

    MathSciNet  MATH  Google Scholar 

  9. Blank, L., Garcke, H., Sarbu, L., Srisupattarawanit, T., Styles, V., Voigt, A.: Constrained optimization and optimal control for partial differential equations. In: Ch. Phase-field Approaches to Structural Topology Optimization, pp. 245–256. Springer Basel (2012). https://doi.org/10.1007/978-3-0348-0133-1-13

  10. Munk, D.J., Vio, G.A., Steven, G.P.: Topology and shape optimization methods using evolutionary algorithms: a review. Struct. Multidiscip. Optim. 52(3), 613–631 (2015). https://doi.org/10.1007/s00158-015-1261-9

    Article  MathSciNet  Google Scholar 

  11. Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49(1), 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  12. Rozvany, G.: A critical review of established methods of structural topology optimization. Struct. Multidiscip. Optim. 37(3), 217–237 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16(1), 68–75 (1998)

    Article  Google Scholar 

  14. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33(4), 401–424 (2007). https://doi.org/10.1007/s00158-006-0087-x

    Article  Google Scholar 

  15. Diaz, A., Sigmund, O.: Checkerboard patterns in layout optimization. Struct. Optim. 10(1), 40–45 (1995)

    Article  Google Scholar 

  16. Petersson, J., Sigmund, O.: Slope constrained topology optimization. Int. J. Numer. Methods Eng. 41(8), 1417–1434 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O.: Efficient topology optimization in matlab using 88 lines of code. Struct. Multidiscip. Optim. 43(1), 1–16 (2011)

    Article  MATH  Google Scholar 

  18. Guest, J.K., Prevost, J.H., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61(2), 238–254 (2004). https://doi.org/10.1002/nme.1064

    Article  MathSciNet  MATH  Google Scholar 

  19. Junker, P., Hackl, K.: A variational growth approach to topology optimization. Struct. Multidiscip. Optim. 52(2), 293–304 (2015)

    Article  MathSciNet  Google Scholar 

  20. Junker, P., Hackl, K.: A discontinuous phase field approach to variational growth-based topology optimization. Struct. Multidiscip. Optim. 54(1), 81–94 (2016)

    Article  MathSciNet  Google Scholar 

  21. Jantos, D.R., Junker, P., Hackl, K.: An evolutionary topology optimization approach with variationally controlled growth. Comput. Methods Appl. Mech. Eng. 310, 780–801 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. Klarbring, A., Torstenfelt, B.: Dynamical systems and topology optimization. Struct. Multidiscip. Optim. 42(2), 179–192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klarbring, A., Torstenfelt, B.: Dynamical systems, simp, bone remodeling and time dependent loads. Struct. Multidiscip. Optim. 45(3), 359–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klarbring, A., Torstenfelt, B.: Lazy zone bone remodeling theory and its relation to topology optimization. Ann. Solid Struct. Mech. 4(1–2), 25–32 (2012)

    Article  Google Scholar 

  25. Sigmund, O., Maute, K.: Topology optimization approaches. Struct. Multidiscip. Optim. 48(6), 1031–1055 (2013)

    Article  MathSciNet  Google Scholar 

  26. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458(2018), 299–317 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Frémond, M.: Non-smooth Thermomechanics. Springer, Dordrecht (2013)

    MATH  Google Scholar 

  28. Hackl, K., Fischer, F.D.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2089), 117–132 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Bendsøe, M.P.: Optimization of Structural Topology, Shape, and Material, vol. 414. Springer, Dordrecht (1995)

    Book  MATH  Google Scholar 

  30. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Dordrecht (2003)

    MATH  Google Scholar 

  31. Christensen, P., Klarbring, A.: An Introduction to Structural Optimization. Solid Mechanics and Its Applications. Springer, Dordrecht (2008)

    Google Scholar 

  32. Cao, Y., Li, S., Petzold, L., Serban, R.: Adjoint sensitivity analysis for differential-algebraic equations: the adjoint dae system and its numerical solution. SIAM J. Sci. Comput. 24(3), 1076–1089 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sigmund, O.: A 99 line topology optimization code written in matlab. Struct. Multidiscip. Optim. 21(2), 120–127 (2001). https://doi.org/10.1007/s001580050176

    Article  MathSciNet  Google Scholar 

  34. Bruns, T.E., Tortorelli, D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190(26), 3443–3459 (2001)

    Article  ADS  MATH  Google Scholar 

  35. Lazarov, B.S., Sigmund, O.: Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Methods Eng. 86(6), 765–781 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33(4), 401–424 (2007)

    Article  Google Scholar 

  37. Ole, S.: On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25(4), 493–524 (1997). https://doi.org/10.1080/08905459708945415

    Article  Google Scholar 

  38. Cardoso, E.L., Fonseca, J.S.O.: Complexity control in the topology optimization of continuum structures. J. Braz. Soc. Mech. Sci. Eng. 25(3), 293–301 (2003)

    Article  Google Scholar 

  39. Junker, P., Hackl, K.: A thermo-mechanically coupled field model for shape memory alloys. Contin. Mech. Thermodyn. 26, 1–19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Junker, P., Schwarz, S., Makowski, J., Hackl, K.: A relaxation-based approach to damage modeling. Contin. Mech. Thermodyn. 29(1), 291–310 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Rockafellar, R.T.: Conjugate Duality and Optimization, vol. 16. SIAM, Philadelphia (1974)

    Book  MATH  Google Scholar 

  42. ParaView Version 5.2.0. http://www.paraview.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin Roman Jantos.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jantos, D.R., Riedel, C., Hackl, K. et al. Comparison of thermodynamic topology optimization with SIMP. Continuum Mech. Thermodyn. 31, 521–548 (2019). https://doi.org/10.1007/s00161-018-0706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0706-y

Keywords

Navigation