Skip to main content
Log in

Exact harmonic solutions to Guyer–Krumhansl-type equation and application to heat transport in thin films

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

A Correction to this article was published on 05 April 2018

This article has been updated

Abstract

A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer–Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 05 April 2018

    Unfortunately, Eq. (14) was incorrectly published in the original publication and the correct equation is provided here.

  • 05 April 2018

    Unfortunately, Eq. (14) was incorrectly published in the original publication and the correct equation is provided here.

References

  1. Fourier, J.P.J.: The Analytical Theory of Heat. Cambridge University Press, London (1878)

    MATH  Google Scholar 

  2. Kovács, R., Ván, P.: Models of ballistic propagation of heat at low temperatures. Int. J. Thermophys. 37(9), 95 (2016)

    Article  ADS  Google Scholar 

  3. Both, S., Czél, B., Fülöp, T., Ván, P., Verhás, J.: Deviation from the Fourier law in room-temperature heat pulse experiments. J. Nonequilib. Thermodyn. 41(1), 41–48 (2016)

    Article  ADS  Google Scholar 

  4. Van, P., Berezovski, A., Fulop, T., Grof, Gy, Kovacs, R., Lovas, A., Verhas, J.: Guyer–Krumhansl-type heat conduction at room temperature. EPL 118(5), 50005 (2017)

    Article  ADS  Google Scholar 

  5. Onsager, L.: Reciprocal relations in irreversible processes. Phys. Rev. 37, 119 (1931)

    Article  Google Scholar 

  6. Peshkov, V.: Second sound in Helium II. J. Phys. (Mosc.) 8, 381 (1944)

    Google Scholar 

  7. Ackerman, C.C., Guyer, R.A.: Temperature pulses in dielectric solids. Ann. Phys. 50(1), 128–185 (1968)

    Article  ADS  Google Scholar 

  8. Ackerman, C.C., Overton, W.C.: Second sound in solid helium-3. Phys. Rev. Lett. 22(15), 764 (1969)

    Article  ADS  Google Scholar 

  9. McNelly, T.F., Rogers, S.J., Channin, D.J., Rollefson, R., Goubau, W.M., Schmidt, G.E., Krumhansl, J.A., Pohl, R.O.: Heat pulses in NaF: onset of second sound. Phys. Rev. Lett. 24(3), 100 (1970)

    Article  ADS  Google Scholar 

  10. Narayanamurti, V., Dynes, R.D.: Observation of second sound in Bismuth. Phys. Rev. Lett. 26, 1461–1465 (1972)

    Article  ADS  Google Scholar 

  11. Cattaneo, C.: Sur une forme de l’equation de la chaleur eliminant le paradoxe d’une propagation instantanee. C. R. Acad. Sci. Paris 247, 431–433 (1958)

    MathSciNet  MATH  Google Scholar 

  12. Terman, Frederick Emmons: Radio Engineers’ Handbook, 1st edn. McGraw-Hill, New York (1943)

    Google Scholar 

  13. Moosaie, A.: Non-Fourier heat conduction in a finite medium with insulated boundaries and arbitrary initial conditions. Int. Commun. Heat Mass Transf. 35, 103–111 (2008)

    Article  Google Scholar 

  14. Ahmadikia, H., Rismanian, M.: Analytical solution of non-Fourier heat conduction problem on a fin under periodic boundary conditions. J. Mech. Sci. Technol. 25(11), 2919–2926 (2011)

    Article  Google Scholar 

  15. Yen, C.C., Wu, C.Y.: Modelling hyperbolic heat conduction in a finite medium with periodic thermal disturbance and surface radiation. Appl. Math. Model. 27, 397–408 (2003)

    Article  Google Scholar 

  16. Lewandowska, M.: Hyperbolic heat conduction in the semi-infinite body with a time-dependent laser heat source. Heat Mass Transf. 37(4–5), 333–342 (2001)

    Article  ADS  Google Scholar 

  17. Lewandowska, M., Malinowski, L.: An analytical solution of the hyperbolic heat conduction equation for the case of a finite medium symmetrically heated on both sides. Int. Commun. Heat Mass Transf. 33, 61–69 (2006)

    Article  Google Scholar 

  18. Saedodin, S., Torabi, M.: Analytical solution of non-Fourier heat conduction in cylindrical coordinates. Int. Rev. Mech. Eng. 3, 726–732 (2009)

    Google Scholar 

  19. Challamel, N., Grazide, C., Picandet, V., Perrot, A., Zhang, Y.: A nonlocal Fourier’s law and its application to the heat conduction of one-dimensional and two-dimensional thermal lattices. C. R. Mec. 344, 388–401 (2016)

    Article  ADS  Google Scholar 

  20. Saedodin, S., Torabi, M.: Algebraically explicit analytical solution of three-dimensional hyperbolic heat conduction equation. Adv. Theor. Appl. Mech. 3(8), 369–383 (2010)

    MATH  Google Scholar 

  21. Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)

    Article  ADS  Google Scholar 

  22. Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound and phonon hydrodynamic phenomena in non-metallic crystals. Phys. Rev. 148, 778–788 (1966)

    Article  ADS  Google Scholar 

  23. Lebon, G., Machrafi, H., Gremela, M., Dubois, Ch.: An extended thermodynamic model of transient heat conduction at sub-continuum scales. Proc. R. Soc. A 467, 3241–3256 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, Berlin (1998)

    Book  Google Scholar 

  25. Zhukovsky, K.V.: Operational method of solution of linear non-integer ordinary and partial differential equations. SpringerPlus 5, 119 (2016). https://doi.org/10.1186/s40064-016-1734-3

    Article  Google Scholar 

  26. Zhukovsky, K.: Operational approach and solutions of hyperbolic heat conduction equations. Axioms 5, 28 (2016)

    Article  Google Scholar 

  27. Zhukovsky, K.V., Srivastava, H.M.: Analytical solutions for heat diffusion beyond Fourier law. Appl. Math. Comput. 293, 423–437 (2017)

    MathSciNet  Google Scholar 

  28. Zhukovsky, K.V.: Violation of the maximum principle and negative solutions with pulse propagation in Guyer–Krumhansl model. Int. J. Heat Mass Transf. 98, 523–529 (2016)

    Article  Google Scholar 

  29. Zhukovsky, K.V.: Exact solution of Guyer–Krumhansl type heat equation by operational method. Int. J. Heat Mass Transf. 96, 132–144 (2016)

    Article  Google Scholar 

  30. Zhukovsky, K.: Exact negative solutions for Guyer–Krumhansl type equation and the violation of the maximum principle. Entropy 19, 440 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zhukovsky, K.V.: A harmonic solution for the hyperbolic heat conduction equation and its relationship to the Guyer–Krumhansl equation. Mosc. Univ. Phys. Bull. 73(1), 45–52 (2018). https://doi.org/10.3103/S0027134918010186

    Article  ADS  Google Scholar 

  32. Zhukovsky, K.: Exact harmonic solution to ballistic type heat propagation in thin films and wires. Int. J. Heat Mass Transf. 120, 944–955 (2018)

    Article  Google Scholar 

  33. Boucetta, A., Ghodbane, H., Ayad, M.Y., Bahri, M.: A review on the performance and modelling of proton exchange membrane fuel cells. AIP Conf. Proc. 1758, 030019 (2016)

    Article  Google Scholar 

  34. Arato, E., Pinna, M., Mazzoccoli, M., Bosio, B.: Gas-phase mass-transfer resistances at polymeric electrolyte membrane fuel cells electrodes: theoretical analysis on the effectiveness of interdigitated and serpentine flow arrangements. Energies 9(4), 229 (2016)

    Article  Google Scholar 

  35. Veltzke, T., Kiewidt, L., Thöming, J.: Multicomponent gas diffusion in nonuniform tubes. AIChE J. 61(4), 1404–1412 (2015)

    Article  Google Scholar 

  36. Maidhily, M., Rajalakshmi, N., Dhathathreyan, K.S.: Electrochemical impedance spectroscopy as a diagnostic tool for the evaluation of flow field geometry in polymer electrolyte membrane fuel cells. Renew. Energy 51, 79–84 (2013)

    Article  Google Scholar 

  37. St-Pierre, J.: Hydrogen mass transport in fuel cell gas diffusion electrodes. Fuel Cells 11(2), 263–273 (2011)

    Article  Google Scholar 

  38. Misran, E., Daud, W.R.W., Majlan, E.H.: Review on serpentine flow field design for PEM fuel cell system. Key Eng. Mater. 447(448), 559–563 (2010)

    Google Scholar 

  39. Kim, S., Hong, I.: Effect of flow field design on the performance of a proton exchange membrane fuel cell (PEMFC). J. Ind. Eng. Chem. 13(5), 864–869 (2007)

    Google Scholar 

  40. Zhukovsky, K., Pozio, A.: Maximum current limitations of the PEM fuel cell with serpentine gas supply channels. J. Power Sources 130, 95–105 (2004)

    Article  ADS  Google Scholar 

  41. Zhukovsky, K.V.: Three dimensional model of gas transport in a porous diffuser of a polymer electrolyte fuel cell. AIChE J. 49(12), 3029–3036 (2003)

    Article  Google Scholar 

  42. Zhukovsky, K.: Modeling of the current limitations of PEFC. AIChE J. 52(7), 2356–2366 (2006)

    Article  Google Scholar 

  43. Weber, A.Z., Newman, J.: Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. 104(10), 4679–4726 (2004)

    Article  Google Scholar 

  44. Kawase, M., Sato, K., Mitsui, R., Asonuma, H., Kageyama, M., Yamaguchi, K., Inoue, G.: Electrochemical reaction engineering of polymer electrolyte fuel cell. AIChE J. 63(1), 249–256 (2017)

    Article  Google Scholar 

  45. Zhukovsky, K.V.: A method of inverse differential operators using ortogonal polynomials and special functions for solving some types of differential equations and physical problems. Mosc. Univ. Phys. Bull. 70(2), 93–100 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  46. Zhukovsky, K.: Solution of some types of differential equations: operational calculus and inverse differential operators. Sci. World J. 2014, 1–8 (2014). (Article ID 454865)

    Article  Google Scholar 

  47. Zhukovsky, K.V.: Solving evolutionary-type differential equations and physical problems using the operator method. Theor. Math. Phys. 190(1), 52–68 (2017)

    Article  MathSciNet  Google Scholar 

  48. Zhukovsky, K.: Operational solution for some types of second order differential equations and for relevant physical problems. J. Math. Anal. Appl. 446(11), 628–647 (2017)

    Article  MathSciNet  Google Scholar 

  49. Dattoli, G., Srivastava, H.M., Zhukovsky, K.V.: Operational methods and differential equations with applications to initial-value problems. Appl. Math. Comput. 184, 979–1001 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Zhukovsky, K.V.: Operational solution of differential equations with derivatives of non-integer order, Black–Scholes type and heat conduction. Mosc. Univ. Phys. Bull. 71(3), 237–244 (2016)

    Article  ADS  Google Scholar 

  51. Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. Wiley, New York (1984)

    MATH  Google Scholar 

  52. Dattoli, G., Srivastava, H.M., Zhukovsky, K.V.: Orthogonality properties of the Hermite and related polynomials. J. Comput. Appl. Math. 182(1), 165–172 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  53. Dattoli, G., Srivastava, H.M., Zhukovsky, K.V.: A new family of integral transforms and their applications. Integral Transform. Spec. Funct. 17(1), 31–37 (2006)

    Article  MathSciNet  Google Scholar 

  54. Taitel, Y.: On the parabolic, hyperbolic and discrete formulation of the heat conduction equation. Int. J. Heat Mass Transf. 15, 369–371 (1972)

    Article  Google Scholar 

  55. Barletta, A., Zanchini, E.: Hyperbolic heat conduction and local equilibrium: a second law analysis. Int. J. Heat Mass Transf. 40(5), 1007–1016 (1997)

    Article  Google Scholar 

  56. Zanchini, E.: Hyperbolic heat conduction theories and nondecreasing entropy. Phys. Rev. B 60(2), 991–997 (1999)

    Article  ADS  Google Scholar 

  57. Körner, C., Bergmann, H.W.: The physical defects of the hyperbolic heat conduction equation. Appl. Phys. A 67, 397–401 (1998)

    Article  ADS  Google Scholar 

  58. Bright, T.J., Zhang, Z.M.: Common misperceptions of the hyperbolic heat equation. J. Thermophys. Heat Transf. 23, 601–607 (2009)

    Article  Google Scholar 

  59. Jha, K.K., Narasimhan, A.: Three-dimensional bio-heat transfer simulation of sequential and simultaneous retinal laser irradiation. Int. J. Therm. Sci. 50, 1191–1198 (2011)

    Article  Google Scholar 

  60. Zhang, L., Shang, X.: Analytical solution to non-Fourier heat conduction as a laser beam irradiating on local surface of a semi-infinite medium. Int. J. Heat Mass Transf. 85, 772–780 (2015)

    Article  Google Scholar 

  61. Sasmal, A., Mishra, S.C.: Analysis of non-Fourier conduction and radiation in a differentially heated 2-D square cavity. Int. J. Heat Mass Transf. 79, 116–125 (2014)

    Article  Google Scholar 

  62. Narasimhan, A., Sadasivam, S.: Non-Fourier bio heat transfer modelling of thermal damage during retinal laser irradiation. Int. J. Heat Mass Transf. 60, 591–597 (2013)

    Article  Google Scholar 

  63. Zhukovskij, K.V.: Gas flow in long microchannels. Vestn. Mosk. Univ. Ser. 3 Fiz. Astron. 3, 49–54 (2001)

    ADS  Google Scholar 

  64. Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679 (1961)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zhukovsky.

Additional information

Communicated by Attila R. Imre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K., Oskolkov, D. Exact harmonic solutions to Guyer–Krumhansl-type equation and application to heat transport in thin films. Continuum Mech. Thermodyn. 30, 1207–1222 (2018). https://doi.org/10.1007/s00161-018-0648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0648-4

Keywords

Navigation