Skip to main content
Log in

Visualising elastic anisotropy: theoretical background and computational implementation

  • Review Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this article, we present the technical realisation for visualisations of characteristic parameters of the fourth-order elasticity tensor, which is classified by three-dimensional symmetry groups. Hereby, expressions for spatial representations of Young’s modulus and bulk modulus as well as plane representations of shear modulus and Poisson’s ratio are derived and transferred into a comprehensible form to computer algebra systems. Additionally, we present approaches for spatial representations of both latter parameters. These three- and two-dimensional representations are implemented into the software MATrix LABoratory. Exemplary representations of characteristic materials complete the present treatise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weng, Y., Dong, H., Dong, H., Gan, Y. (eds.): Advanced Steels. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-17665-4

    Google Scholar 

  2. Altenbach, H., Altenbach, J., Kissing, W.: Mechanics of Composite Structural Elements. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-08589-9

    Book  Google Scholar 

  3. Langston, L.: Each blade a single crystal. Am. Sci. 103(1), 30 (2015). https://doi.org/10.1511/2015.112.30

    Article  Google Scholar 

  4. Altenbach, H.: Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Gleichungen, 3rd edn. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-47070-1

    Book  MATH  Google Scholar 

  5. Lai, W., Rubin, D., Krempl, E.: Introduction to Continuum Mechanics, 4th edn. Butterworth-Heinemann, Oxford (2009)

    MATH  Google Scholar 

  6. Skrzypek, J.J., Ganczarski, A.W. (eds.): Mechanics of Anisotropic Materials. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-17160-9_1

    MATH  Google Scholar 

  7. Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction, 3rd edn. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-24615-9

    Book  MATH  Google Scholar 

  8. Nye, J.F.: Physical Properties of Crystals. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  9. Voigt, W.: Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Vieweg+Teubner Verlag, Berlin (1928). https://doi.org/10.1007/978-3-663-15884-4

    MATH  Google Scholar 

  10. Fedorov, F.I.: Theory of Elastic Waves in Crystals. Plenum Press, New York (1968). https://doi.org/10.1007/978-1-4757-1275-9

    Book  Google Scholar 

  11. Cowin, S.C.: Properties of the anisotropic elasticity tensor. Quart. J. Mech. Appl. Math. 42(2), 249–266 (1989). https://doi.org/10.1093/qjmam/42.2.249

    Article  MathSciNet  MATH  Google Scholar 

  12. Coleman, B.D., Noll, W.: Material symmetry and thermostatic inequalities in finite elastic deformations. Arch. Ration. Mech. Anal. 15(2), 87–111 (1964). https://doi.org/10.1007/BF00249520

    Article  MathSciNet  MATH  Google Scholar 

  13. Ting, T.C.T.: Generalized Cowin–Mehrabadi theorems and a direct proof that the number of linear elastic symmetries is eight. Int. J. Solids Struct. 40(25), 7129–7142 (2003). https://doi.org/10.1016/S0020-7683(03)00358-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \(\overset{\circ }{\varvec {\tau }}^{\star }=\lambda ({{\rm tr}}\varvec {D})\varvec {I} + 2\mu \varvec {D}\) and its significance to finite inelasticity. Acta Mech. 138(1), 31–50 (1999). https://doi.org/10.1007/BF01179540

    Article  Google Scholar 

  15. Weyl, H.: The Classical Groups: Their Invariants and Representations, 2nd edn. Princeton University Press, Princeton (1997). 15. print and 1. paperback print

    MATH  Google Scholar 

  16. Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  17. Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005). https://doi.org/10.1007/978-3-540-26455-2

    Book  Google Scholar 

  18. Böhlke, T., Brüggemann, C.: Graphical representation of the generalized Hooke‘s law, Technische Mechanik 21(2):145–158 (2001). http://www.uni-magdeburg.de/ifme/zeitschrift_tm/2001_Heft2/Boehlke_Brueggeman.pdf. Accessed 7 Dec 2017

  19. Rychlewski, J.: Unconventional approach to linear elasticity. Arch. Mech. 47(2), 149–171 (1995)

    MathSciNet  MATH  Google Scholar 

  20. He, Q.-C., Curnier, A.: A more fundamental approach to damaged elastic stress–strain relations. Int. J. Solids Struct. 32(10), 1433–1457 (1995). https://doi.org/10.1016/0020-7683(94)00183-W

    Article  MathSciNet  MATH  Google Scholar 

  21. Reuss, A.: Berechnung der Fliegrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J. Appl. Math. Mech. 9(1), 49–58 (1929). https://doi.org/10.1002/zamm.19290090104

    MATH  Google Scholar 

  22. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65(5), 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  23. Mehrabadi, M.M., Cowin, S.C.: Eigentensors of linear anisotropic elastic materials. Quart. J. Mech. Appl. Math. 43(1), 15–41 (1990). https://doi.org/10.1093/qjmam/43.1.15

    Article  MathSciNet  MATH  Google Scholar 

  24. Mandel, J.: Eigentensors of linear anisotropic elastic materials. Quart. J. Mech. Appl. Math. 1, 3–30 (1962)

    Google Scholar 

  25. Thomson, W.: Mathematical theory of elasticity: elasticity. Encycl. Br. 7, 819–825 (1878)

    Google Scholar 

  26. Sutcliffe, S.: Spectral decomposition of the elasticity tensor. J. Appl. Mech. 59(4), 762–773 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Golub, G.H., Loan, C.F.V.: Matrix Computations (Johns Hopkins Studies in Mathematical Sciences), 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  28. Marmier, A., Lethbridge, Z.A., Walton, R.I., Smith, C.W., Parker, S.C., Evans, K.E.: ElAM: a computer program for the analysis and representation of anisotropic elastic properties. Comput. Phys. Commun. 181(12), 2102–2115 (2010). https://doi.org/10.1016/j.cpc.2010.08.033

    Article  ADS  MATH  Google Scholar 

  29. Gaillac, R., Pullumbi, P., Coudert, F.-X.: ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 28(27), 275201 (2016). https://doi.org/10.1088/0953-8984/28/27/275201

    Article  Google Scholar 

  30. dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009). https://doi.org/10.1098/rspa.2008.0530

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Auffray, N., Quang, H.L., He, Q.: Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61(5), 1202–1223 (2013). https://doi.org/10.1016/j.jmps.2013.01.003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Aßmus, M., Nordmann, J., Naumenko, K., Altenbach, H.: A homogeneous substitute material for the core layer of photovoltaic composite structures. Compos. Part B Eng. 112, 353–372 (2017). https://doi.org/10.1016/j.compositesb.2016.12.042

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nordmann.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordmann, J., Aßmus, M. & Altenbach, H. Visualising elastic anisotropy: theoretical background and computational implementation. Continuum Mech. Thermodyn. 30, 689–708 (2018). https://doi.org/10.1007/s00161-018-0635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0635-9

Keywords

Navigation