Skip to main content
Log in

Constitutive equations for the cyclic behaviour of short carbon fibre-reinforced thermoplastics and identification on a uniaxial database

Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A constitutive model for the cyclic behaviour of short carbon fibre-reinforced thermoplastics for aeronautical applications is proposed. First, an extended experimental database is generated in order to highlight the specificities of the studied material. This database is composed of complex tests and is used to design a relevant constitutive model able to capture the cyclic behaviour of the material. A general 3D formulation of the model is then proposed, and an identification strategy is defined to identify its parameters. Finally, a validation of the identification is performed by challenging the prediction of the model to the tests that were not used for the identification. An excellent agreement between the numerical results and the experimental data is observed revealing the capabilities of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Advani, S., Tucker, C.: A numerical simulation of short fiber orientation in compression molding. Polym. Compos. 11(3), 164–173 (1990)

    Article  Google Scholar 

  2. Andriyana, A., Billon, N., Silva, L.: Mechanical response of a short fiber-reinforced thermoplastic: experimental investigation and continuum mechanical loading. Eur. J. Mech. A 29, 1065–1077 (2010)

    Article  Google Scholar 

  3. Benoit, A., Maitournam, M., Rémy, L., Oger, F.: Cyclic behaviour of structures under thermomechanical loadings: application to exhaust manifolds. Int. J. Fatigue 38, 65–74 (2012)

    Article  Google Scholar 

  4. Bernasconi, A., Cosmi, F., Hine, P.: Analysis of fibre orientation distribution in short fibre reinforced polymers: a comparison between optical and tomographic methods. Compos. Sci. Technol. 72, 2002–2008 (2012)

    Article  Google Scholar 

  5. Blaber, J., Adair, B., Antoniou, A.: Ncorr: open-source 2D digital image correlation matlab software. Exp. Mech. 55, 1105–1122 (2015)

    Article  Google Scholar 

  6. Chaboche, J.: Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers. Int. J. Solids Struct. 34, 2239–2254 (1997)

    Article  Google Scholar 

  7. Colak, O.: Modeling deformation behavior of polymers with viscoplasticity theory based on overstress. Int. J. Plast. 21, 145–160 (2005)

    Article  Google Scholar 

  8. Constantinescu, A., Van Dang, K., Maitournam, M.: A unified approach for high and low cycle fatigue based on shakedown concepts. Fatigue Fract. Eng. Mater. Struct. 26, 561–568 (2003)

    Article  Google Scholar 

  9. Dray Bensahkoun, D.: Pédiction des propriétés thermo-élastiques d’un composite injecté et chargé de fibres courtes. Ph.D. Thesis, ENSAM Paris (2006)

  10. Drozdov, A., Dusunceli, N.: Cyclic deformations of polypropylene with a strain-controlled program. Polym. Eng. Sci. 52, 2316–2326 (2012)

    Article  Google Scholar 

  11. Halphen, B., Nguyen, Q.: Sur les matériaux standards généralisés. J. Mec. 14, 39–63 (1975)

    MATH  Google Scholar 

  12. Jégou, L., Marco, Y., Le Saux, V., Calloch, S.: Fast prediction of the wöhler curve from heat build-up measurements on short fiber reinforced thermoplastics. Int. J. Fatigue 47, 259–267 (2012)

    Article  Google Scholar 

  13. Kichenin, J.: Comportement thermomécanique du polyéthylène. Application aux structures gazières. Ph.D. Thesis, Ecole Polytechnique (1992)

  14. Klimkeit, B., Nadot, Y., Castagnet, S., Nadot-Martin, C., Dumas, C., Bergamo, S., Sonsino, C., Buter, A.: Multiaxial fatigue life assessment for reinforced polymers. Int. J. Fatigue 33, 766–780 (2011)

    Article  Google Scholar 

  15. Krairi, A., Doghri, I.: A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage. Int. J. Plast. 60, 163–181 (2014)

    Article  Google Scholar 

  16. Krairi, A., Doghri, I., Robert, G.: Multiscale high cycle fatigue models for neat and short fiber reinforced thermoplastic polymers. Int. J. Fatigue 92, 179–192 (2016)

    Article  Google Scholar 

  17. Krairi, A.: Multiscale modeling of the damage and failure of homogeneous and short-fiber reinforced thermoplastics under monotonic and fatigue loadings. Ph.D. Thesis, Université Catholique de Louvain (2015)

  18. Launay, A., Maitournam, M., Marco, Y., Raoult, I.: Multiaxial fatigue models for short glass fiber reinforced polyamide. Part II: fatigue life estimation. Int. J. Fatigue 47, 390–406 (2013)

    Article  Google Scholar 

  19. Launay, A., Maitournam, M., Marco, Y., Raoult, I., Szmytka, F.: Cyclic behaviour of short glass fibre reinforced polyamide: experimental study and constitutive equations. Int. J. Plast. 27, 1267–1293 (2011)

    Article  Google Scholar 

  20. Launay, A., Marco, Y., Maitournam, M., Raoult, I.: Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide. Mech. Mater. 56, 1–10 (2013)

    Article  Google Scholar 

  21. Le Saux, V., Doudard, C.: Proposition of a compensated pixelwise calibration for photonic infrared cameras and comparison to classic calibration procedures: case of thermoelastic stress analysis. Infrared Phys. Technol. 80, 83–92 (2017)

    Article  ADS  Google Scholar 

  22. Lemaitre, J., Chaboche, J.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  23. Leveuf, L., Marco, Y., Le Saux, V., Navrátil, L., Leclercq, S.: Fast screening of the fatigue properties of thermoplastics reinforced with short carbon fibers based on thermal measurements. Polym. Test. (2017) (submitted)

  24. Marco, Y., Le Saux, V., Jégou, L., Launay, A., Serrano, L., Raoult, I., Calloch, S.: Dissipation analysis in SFRP structural samples: thermomechanical analysis and comparison to numerical simulations. Int. J. Fatigue 67, 142–150 (2014)

    Article  Google Scholar 

  25. Marco, Y.: Caractérisation multi-axiale du comportement et de la micro-structure d’un semi-cristallin: application au cas du P.E.T. Ph.D. Thesis, Ecole Normale Supérieure de Cachan (2003)

  26. Masquelier, I., Marco, Y., Le Saux, V., Calloch, S., Charrier, P.: Determination of dissipated energy fields from temperature mappings on a rubber-like structural sample: experiments and comparison to numerical simulations. Mech. Mater. 80, 113–123 (2015)

    Article  Google Scholar 

  27. Mortazavian, S., Fatemi, A.: Fatigue of short fiber thermoplastic composites: a review of recent experimental results and analysis. Int. J. Fatigue 102, 171–183 (2017)

    Article  Google Scholar 

  28. Ostwald, W.: Ueber die rechnerische darstellung des strukturgebietes der viskosität. Kolloid Z. 47, 176–187 (1929)

    Article  Google Scholar 

  29. Praud, F., Chatzigeorgiou, G., Bikard, J., Meraghni, F.: Phenomenological multi-mechanisms constitutive modelling for thermoplastic polymers, implicit implementation and experimental validation. Mech. Mater. 114, 9–29 (2017)

    Article  Google Scholar 

  30. Rémond, Y.: Constitutive modelling of viscoelastic unloading of short glass fibre-reinforced polyethylene. Compos. Sci. Technol. 65, 421–428 (2005)

    Article  Google Scholar 

  31. Selmi, A., Doghri, I., Adam, L.: Micromechanical simulations of biaxial yield, hardening and plastic flow in short glass fiber reinforced polyamide. Int. J. Mech. Sci. 53, 696–706 (2011)

    Article  Google Scholar 

  32. Serrano, L., Marco, Y., Le Saux, V., Robert, G., Charrier, P.: Fast prediction of the fatigue behavior of short-fiber-reinforced thermoplastics based on heat build-up measurements: application to heterogeneous cases. Contin. Mech. Thermodyn. 29, 1113–1133 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. Vincent, M., Giroud, T., Clarker, A.: Eberhardt: description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics. Polymer 46, 6719–6725 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Doudard, S. Calloch and S. Moyne from ENSTA Bretagne, R. Billardon from Safran Landing Systems and N. Carrère from Safran Composites for stimulating discussions and F. Montel from ENSTA Bretagne for the development of the LabView software. One of the authors (L. Leveuf) would like to thank Safran Composites for the funding of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Le Saux.

Additional information

Communicated by Johlitz, Laiarinandrasana and Marco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leveuf, L., Navrátil, L., Le Saux, V. et al. Constitutive equations for the cyclic behaviour of short carbon fibre-reinforced thermoplastics and identification on a uniaxial database. Continuum Mech. Thermodyn. 32, 403–420 (2020). https://doi.org/10.1007/s00161-017-0616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0616-4

Keywords

Navigation