Skip to main content
Log in

Bubbles in liquids with phase transition

Part 1. On phase change of a single vapor bubble in liquid water

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the forthcoming second part of this paper a system of balance laws for a multi-phase mixture with many dispersed bubbles in liquid is derived where phase transition is taken into account. The exchange terms for mass, momentum and energy explicitly depend on evolution laws for total mass, radius and temperature of single bubbles. Therefore in the current paper we consider a single bubble of vapor and inert gas surrounded by the corresponding liquid phase. The creation of bubbles, e.g. by nucleation is not taken into account. We study the behavior of this bubble due to condensation and evaporation at the interface. The aim is to find evolution laws for total mass, radius and temperature of the bubble, which should be as simple as possible but consider all relevant physical effects. Special attention is given to the effects of surface tension and heat production on the bubble dynamics as well as the propagation of acoustic elastic waves by including slight compressibility of the liquid phase. Separately we study the influence of the three phenomena heat conduction, elastic waves and phase transition on the evolution of the bubble. We find ordinary differential equations that describe the bubble dynamics. It turns out that the elastic waves in the liquid are of greatest importance to the dynamics of the bubble radius. The phase transition has a strong influence on the evolution of the temperature, in particular at the interface. Furthermore the phase transition leads to a drastic change of the water content in the bubble. It is shown that a rebounding bubble is only possible, if it contains in addition an inert gas. In Part 2 of the current paper the equations derived are sought in order to close the system of equations for multi-phase mixture balance laws for dispersed bubbles in liquids involving phase change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhatov I., Lindau O., Topolnikov A., Mettin R., Vakhitova N., Lauterborn W.: Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids 13, 2805–2819 (2001)

    Article  ADS  Google Scholar 

  2. Akhatov I., Vakhitova N., Topolnikov A., Zakirov K., Wolfrum B., Kurz T., Lindau O., Mettin R., Lauterborn W.: Dynamics of laser-induced cavitation bubbles. Exp. Therm. Fluid Sci. 26, 731–737 (2002)

    Article  Google Scholar 

  3. Bond M., Struchtrup H.: Mean evaporation and condensation coefficients based on energy dependent condensation probability. Phys. Rev. E 70, 061605 (2004)

    Article  ADS  Google Scholar 

  4. Brennen C.E.: Cavitation and Bubble Dynamics. Oxford University Press, New York (1995)

    Google Scholar 

  5. Dreyer, W.: On jump conditions at phase boundaries for ordered and disordered phases, WIAS Preprint 869 (2003). http://www.wias-berlin.de/main/publications/wias-publ/

  6. Dreyer W., Duderstadt F.: On the Becker/Döring theory of nucleation of liquid droplets in solids. J. Stat. Phys. 123, 55–87 (2006)

    Article  ADS  MATH  Google Scholar 

  7. Franc J.P., Michel J.M.: Fundamentals of Cavitation. Springer Science and Business Media, Inc, (2005)

  8. Fujikawa S., Akamatsu T.: Effects of the non-equilibrium condensation of vapor on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97, 481–512 (1980)

    Article  ADS  MATH  Google Scholar 

  9. Grigull U., Straub S., Schiebener P.: Steam tables in SI-Units, Wasserdampftafeln. Springer, Berlin (1990)

    Book  Google Scholar 

  10. Gilmore F.R.: The growth or collapse of a spherical bubble in a viscous compressible liquid, Technical Report 26-4. Hydrodynamics Laboratory, California Institue of Technology, Pasadena, California (1952)

    Google Scholar 

  11. Hickling R., Plesset M.: Collapse and rebound of a spherical bubble in water. Phys. Fluids 7, 7–14 (1964)

    Article  ADS  MATH  Google Scholar 

  12. Gurtin M.E.: Thermomechanics of moving phase boundaries in the plane. Oxford University Press, Oxford (1993)

    Google Scholar 

  13. Keller J.B., Kolodner I.I.: Damping of underwater explosion bubble oscillations. J. Appl. Phys. 27, 1152–1161 (1956)

    Article  ADS  Google Scholar 

  14. Keller J.B., Miksis M.: Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628–633 (1980)

    Article  ADS  MATH  Google Scholar 

  15. Kurz T., Kröninger D., Geisler R., Lauterborn W.: Optic cavitation in an ultrasonic field. Phys. Rev. E 74, 066307 (2006)

    Article  ADS  Google Scholar 

  16. Lauterborn W.: Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 59, 283–293 (1976)

    Article  ADS  Google Scholar 

  17. Leighton T.G.: The acoustic bubble. Academic Press, London (1994)

    Google Scholar 

  18. Müller I., Müller W.: Fundamentals of thermodynamics and applications. Springer, Berlin (2009)

    MATH  Google Scholar 

  19. Müller I.: Thermodynamics. Pitman, London (1985)

    MATH  Google Scholar 

  20. Müller, S., Bachmann, M., Kröninger, D., Kurz, T., Helluy, P.: Comparison and validation of compressible flow simulations of laser-induced cavitation bubbles. Comput. Fluids. (2009). doi:10.1016/j.compfluid.2009.04.004

  21. Nigmatulin R.I., Akhatov I.S., Vakhitova N.K., Lahey R.T.: On the forced oscillations of a small gas bubble in a spherical liquid filled flask. J. Fluid Mech. 414, 47–73 (2000)

    Article  ADS  MATH  Google Scholar 

  22. Nigmatulin R.I., Khabeev N.S.: Heat exchange between a gas bubble and a liquid. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 5, 759–764 (1974)

    Google Scholar 

  23. Plesset M.S.: The dynamics of cavitation bubbles. J. Appl. Mech. 16, 277–282 (1949)

    Google Scholar 

  24. Plesset M.S., Prosperetti A.: Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145–185 (1977)

    Article  ADS  Google Scholar 

  25. Prosperetti A., Crum L.A., Commander K.W.: Nonlinear bubble dynamics. J. Acoust. Soc. Am. 83, 502–514 (1988)

    Article  ADS  Google Scholar 

  26. Prosperetti A., Lezzi A.: Bubble dynamics in a compressible liquid Part 1: first order theory. J. Fluid Mech. 168, 457–478 (1986)

    Article  ADS  MATH  Google Scholar 

  27. Rayleigh L.: On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. 34(6), 94–98 (1917)

    MATH  Google Scholar 

  28. Serrin J.: Mathematical principles of classical fluid mechanics. In: Flügge, S. (ed) Handbuch der Physik VIII/1—Strömungsmechanik, vol. 1, pp. 125–263. Springer, Berlin (1959)

    Google Scholar 

  29. Tomita Y., Shima A.: On the behavior of a spherical bubble and the impulse pressure in a viscous compressible liquid. Bull. JSME 20, 1453–1460 (1977)

    Article  Google Scholar 

  30. Trilling L.: The collapse and rebound of a gas bubble. J. Appl. Phys. 23, 14–17 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  31. Wu C.C., Roberts P.H.: Shock-wave propagation in a sonoluminescing gas bubble. Phys. Rev. Lett. 70, 3424–3427 (1993)

    Article  ADS  Google Scholar 

  32. Yasui K.: Effects of thermal conduction on bubble dynamics near the sonoluminescence threshold. J. Acoust. Soc. Am. 98, 2772–2782 (1995)

    Article  ADS  Google Scholar 

  33. Zein, A.: Numerical methods for multiphase mixture conservation laws with phase transition, PHD thesis, Otto-von-Guericke University Magdeburg (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Hantke.

Additional information

Communicated by Oliver Kastner.

This work was supported by the DFG grant Wa 633/17 within the DFGCNRS research group FOR 563/1 and by the DFG grant DR 401/4-1. The authors thank the DFG for this funding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreyer, W., Duderstadt, F., Hantke, M. et al. Bubbles in liquids with phase transition. Continuum Mech. Thermodyn. 24, 461–483 (2012). https://doi.org/10.1007/s00161-011-0225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-011-0225-6

Keywords

Navigation