Skip to main content
Log in

The Cattaneo type space-time fractional heat conduction equation

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The classical heat conduction equation is generalized using a generalized heat conduction law. In particular, we use the space-time Cattaneo heat conduction law that contains the Caputo symmetrized fractional derivative instead of gradient \({{\partial_x}}\) and fractional time derivative instead of the first order partial time derivative \({{\partial_t}}\) . The existence of the unique solution to the initial-boundary value problem corresponding to the generalized model is established in the space of distributions. We also obtain explicit form of the solution and compare it numerically with some limiting cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atanacković, T.M., Grillo, A., Wittum, G., Zorica, D.: Fractional Jeffreys-type diffusion equation. In: Proceedings of 4th IFAC Workshop on Fractional Differentiation and Its Applications (2010)

  2. Atanacković T.M., Pilipović S., Zorica D.: Diffusion wave equation with two fractional derivatives of different order. J. Phys. A: Math. Theor. 40, 5319–5333 (2007)

    Article  ADS  MATH  Google Scholar 

  3. Atanacković T.M., Pilipović S., Zorica D.: Time distributed order diffusion-wave equation. I. Voltera type equation. Proc. R. Soc. A 465, 1869–1891 (2009)

    Article  MATH  Google Scholar 

  4. Atanacković T.M., Pilipović S., Zorica D.: Time distributed order diffusion-wave equation. II. Applications of the Laplace and Fourier transformations. Proc. R. Soc. A 465, 1893–1917 (2009)

    Article  MATH  Google Scholar 

  5. Atanacković T.M., Oparnica Lj., Pilipović S.: Semilinear ordinary differential equation coupled with distributed order fractional differential equation. Nonlinear Anal. 72, 4101–4114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atanackovic T.M., Stankovic B.: An expanssion formula for fractional derivatives and its application. Fractional Calc. Appl. Anal. 7(3), 365–378 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Atanacković T.M., Stanković B.: Generalized wave equation in nonlocal elasticity. Acta Mech. 208, 1–10 (2009)

    Article  MATH  Google Scholar 

  8. Camargo R.F., Chiacchio A.O., Capelas de Oliveira E.: Differentiation to fractional orders and the fractional telegraph equation. J. Math. Phys. 49, 033505 (2008)

    Article  MathSciNet  Google Scholar 

  9. Camargo R.F., Charnet R., Capelas de Oliveira E.: On some fractional Green’s functions. J. Math. Phys. 50, 043514 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. Cattaneo M.R.: Sur une forme de l’équation de la chaleur éliminat le paradoxe d’une propagation instantanée. Compte. Rend. 247, 431–433 (1958)

    MathSciNet  Google Scholar 

  11. Chester M.: Second sound in solids. Phys. Rev. 131, 2013–2015 (1963)

    Article  ADS  Google Scholar 

  12. Compte A., Metzler R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A: Math. Gen. 30, 7277–7289 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Engler, H.: On the speed of spread for fractional reaction-diffusion equations. Int. J. Differ. Equ. 2010, ID 315421 (2010)

  14. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  15. Essex C., Schulzky C., Franz A., Hoffmann K.H.: Tsallis and Rényi entropies in fractional diffusion and entropy production. Phys. A 284, 299–308 (2000)

    Article  MathSciNet  Google Scholar 

  16. Hanyga A.: Multidimensional solutions of space-fractional diffusion equations. Proc. R. Soc. A 457, 2993–3005 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Hoffmann K.H., Essex C., Schulzky C.: Fractional diffusion and entropy production. J. Non-Equilib. Thermodyn. 23, 166–175 (1998)

    Article  ADS  MATH  Google Scholar 

  18. Joseph D.D., Preziosi L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Konjik S., Oparnica L., Zorica D.: Waves in fractional zener type viscoelastic media. J. Math. Anal. Appl. 365, 259–268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B.V, Amsterdam (2006)

    MATH  Google Scholar 

  21. Li X., Essex C., Davison M., Hoffmann K.H., Schulzky C.: Fractional diffusion, erreversibility and entropy. J. Non-Equilib. Thermodyn. 28, 279–291 (2003)

    Article  ADS  Google Scholar 

  22. Mainardi F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  23. Mainardi F., Pagnini G., Gorenflo R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Metzler R., Klafter J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, R161–R208 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Müller I., Ruggeri T.: Rational Extended Thermodynamics (2nd edn.). Springer, Berlin (1993)

    Book  Google Scholar 

  26. Naber, M.: Linear fractionally damped oscillator. Int. J. Differ. Equ. 2010, ID 197020 (2010)

  27. Nakhushev, A.M.: Fractional calculus and its applications. FIZMATLIT, Moscow (2003) (in Russian)

  28. Orsingher E., Zhao X.: The space-fractional telegraph equation and the related fractional telegraph process. Chin. Ann. Math. 24B, 45–56 (2003)

    Article  MathSciNet  Google Scholar 

  29. Prehl J., Essex C., Hoffmann K.H.: The superdiffusion entropy production paradox in the space-fractional case for extended entropies. Phys. A 389, 215–224 (2010)

    Article  Google Scholar 

  30. Qi H., Jiang X.: Solutions of the space-time fractional Cattaneo diffusion equation. Phys. A 390, 1876–1883 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ruggeri T., Muracchini A., Seccia L.: Continuum approach to phonon gas and shape changes of second sound via shock waves theory. Il Nuovo Cimento 16, 15–44 (1994)

    Article  Google Scholar 

  32. Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  33. Silhavy M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997)

    MATH  Google Scholar 

  34. Sun HG., Chen W., Chen YQ.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)

    Article  Google Scholar 

  35. Vladimirov V.S.: Equations of Mathematical Physics. Mir Publishers, Moscow (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Zorica.

Additional information

Communicated by Manuel Torrilhon.

Dedicated to Professor Ingo Müller for his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atanacković, T., Konjik, S., Oparnica, L. et al. The Cattaneo type space-time fractional heat conduction equation. Continuum Mech. Thermodyn. 24, 293–311 (2012). https://doi.org/10.1007/s00161-011-0199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-011-0199-4

Keywords

Navigation