Skip to main content
Log in

An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this article, we propose a numerical scheme to solve the Kac model of the Boltzmann equation for multiscale rarefied gas dynamics. Formally, this scheme is shown to be uniformly stable with respect to the Knudsen number, consistent with the fluid-diffusion limit for small Knudsen numbers, and with the Kac equation in the kinetic regime. Our approach is based on the micro–macro decomposition which leads to an equivalent formulation of the Kac model that couples a kinetic equation with macroscopic ones. This method is validated with various test cases and compared to other standard methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardos C., Golse F., Levermore D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63(1–2), 323–344 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bennoune, M.: Approximation numérique de quelques équations cinétiques préservant leurs asymptotiques fluides. PhD thesis, Université Paul Sabatier Toulouse 3, Toulouse, France, in french (2009)

  3. Bennoune M., Lemou M., Mieussens L.: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics. J. Comput. Phys. 227(8), 3781–3803 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Bobylëv A.V.: Exact solutions of the Boltzmann equation. Dokl. Akad. Nauk SSSR 225(6), 1296–1299 (1975)

    MathSciNet  ADS  Google Scholar 

  5. Caflisch R.-E., Jin S., Russo G.: Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34(1), 246–281 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Degond, P.: Macroscopic limits of the Boltzmann equation: a review. In: Modeling and computational methods for kinetic equations, Model. Simul. Sci. Eng. Technol., pp. 3–57. Birkhäuser Boston, Boston, MA (2004)

  7. Desvillettes L.: About the regularizing properties of the non-cut-off Kac equation. Comm. Math. Phys. 168(2), 417–440 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Filbet F., Mouhot C., Pareschi L.: Solving the Boltzmann equation inNlog2 N. SIAM J. Sci. Comput. 28(3), 1029–1053 (electronic) (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gabetta E., Pareschi L.: About the non-cutoff Kac equation: uniqueness and asymptotic behaviour. Comm. Appl. Nonlinear Anal. 4(1), 1–20 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Gabetta E., Pareschi L., Toscani G.: Relaxation schemes for nonlinear kinetic equations. SIAM J. Numer. Anal. 34(6), 2168–2194 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jin S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21(2), 441–454 (electronic) (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jin S., Levermore C.-D.: Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 126(2), 449–467 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Jin S., Pareschi L.: Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes. J. Comput. Phys. 161(1), 312–330 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Jin, S., Pareschi, L.: Asymptotic-preserving (AP) schemes for multiscale kinetic equations: a unified approach. In: Hyperbolic problems: theory, numerics, applications, Vol. I, II (Magdeburg, 2000), volume 141 of Int. Ser. Numer. Math., 140, pages 573–582. Birkhäuser, Basel (2001)

  15. Kac, M.: Probability and related topics in the physical sciences. Lectures in Applied Mathematics. Interscience Publishers, London, New York (1957)

  16. Klar A.: An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35(3), 1073–1094 (electronic) (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Klar A.: An asymptotic preserving numerical scheme for kinetic equations in the low Mach number limit. SIAM J. Numer. Anal. 36(5), 1507–1527 (electronic) (1999a)

    Article  MATH  MathSciNet  Google Scholar 

  18. Klar A.: A numerical method for kinetic semiconductor equations in the drift-diffusion limit. SIAM J. Sci. Comput. 20(5), 1696–1712 (electronic) (1999b)

    Article  MATH  MathSciNet  Google Scholar 

  19. Krook M., Wu T.T.: Formation of maxwellian tails. Phys. Rev. Lett. 36, 1107–1109 (1976)

    Article  ADS  Google Scholar 

  20. Lemou M., Mieussens L.: A new asymptotic preserving scheme based on micro–macro formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 31(1), 334–368 (2008)

    Article  MathSciNet  Google Scholar 

  21. McKean H.P. Jr: Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas. Arch. Ration. Mech. Anal. 21, 343–367 (1966)

    Article  MathSciNet  Google Scholar 

  22. Naldi G., Pareschi L.: Numerical schemes for kinetic equations in diffusive regimes. Appl. Math. Lett. 11(2), 29–35 (1998)

    Article  MathSciNet  Google Scholar 

  23. Pareschi L., Caflisch R.-E.: An implicit Monte Carlo method for rarefied gas dynamics. I. The space homogeneous case. J. Comput. Phys. 154(1), 90–116 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Pareschi L., Russo G.: Time relaxed Monte Carlo methods for the Boltzmann equation. SIAM J. Sci. Comput. 23(4), 1253–1273 (electronic) (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pareschi L., Russo G.: Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37(4), 1217–1245 (electronic) (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rogier F., Schneider J.: A direct method for solving the Boltzmann equation. Transp. Theory Stat. Phys. 23(1–3), 313–338 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Bennoune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennoune, M., Lemou, M. & Mieussens, L. An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit. Continuum Mech. Thermodyn. 21, 401–421 (2009). https://doi.org/10.1007/s00161-009-0116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-009-0116-2

Keywords

PACS

AMS subject classifications

Navigation