Skip to main content
Log in

Accurate abundance analysis of late-type stars: advances in atomic physics

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

The measurement of stellar properties such as chemical compositions, masses and ages, through stellar spectra, is a fundamental problem in astrophysics. Progress in the understanding, calculation and measurement of atomic properties and processes relevant to the high-accuracy analysis of F-, G-, and K-type stellar spectra is reviewed, with particular emphasis on abundance analysis. This includes fundamental atomic data such as energy levels, wavelengths, and transition probabilities, as well as processes of photoionisation, collisional broadening and inelastic collisions. A recurring theme throughout the review is the interplay between theoretical atomic physics, laboratory measurements, and astrophysical modelling, all of which contribute to our understanding of atoms and atomic processes, as well as to modelling stellar spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. It is important to note the distinction between accuracy and precision. Accuracy refers to the correctness of a measurement, i.e. how close the measurement is to the true value, while precision refers to the reproducibility of a measurement. Depending on the situation, absolute or relative accuracy may be most important.

  2. Note, errors on the observational side, such as issues in the reduction of echelle spectra, not least continuum placement, may be at least equally important in specific cases (e.g. Caffau et al. 2008).

  3. The webpage http://physics.nist.gov/PhysRefData/ASD/Html/verhist.shtml logs all improvements and updates.

  4. On a historical note, it is worth to comment that charge transfer was first considered in astrophysics by Chamberlain (1956) after Bates (1954) noted the process \({\mathrm {H}} + {\mathrm {O}}^+ \rightleftharpoons {\mathrm {H}}^+ + {\mathrm {O}}\), should, due to the similarity of the ionisation potentials of H and O, have large cross sections at low energies. Chamberlain, and later Field and Steigman (1971), considered this process in the ISM. Later Judge (1986) also considered this process in stellar atmospheres.

  5. Partial processes are those from one channel to a particular final channel, as distinct from total processes from one channel to all possible final channels.

  6. Note there is also a misprint, see Osorio et al. (2015).

  7. We note, however, that calculations usually lack an estimate of their uncertainty. This restricts their viability, because a number without an indication of its uncertainty has no real meaning.

Abbreviations

ABO:

Anstee, Barklem and O’Mara

ASD:

Atomic Spectra Database (at NIST)

ATLAS:

Model stellar atmosphere computer program by Kurucz

AUTOSTRUCTURE:

Atomic structure computer program by Badnell

BSR:

B-Spline R-matrix

CCC:

Convergent close coupling

CCD:

Charge-coupled device

CIV3:

Atomic structure computer program by Hibbert

DESIREE:

Double ElectroStatic Ion Ring ExpEriment

DSB:

Derouich, Sahal-Bréchot and Barklem

ESO:

European Southern Observatory

FARM:

R-matrix computer program for external region problem by Burke and Noble

HBOP:

Hydrogen Bound and bound–free OPacity code

HLINOP:

Hydrogen LINe OPacity computer code by Barklem and Piskunov

HLINPROF:

Hydrogen LINe PROFile computer code by Barklem and Piskunov

IDL:

Interactive Data Language

KAULAKYS:

Computer program for Kaulaky’s free-electron model by Barklem

LFU:

Lindholm–Foley–Unsöld

LTE:

Local thermodynamic equilibrium

MARCS:

Model stellar atmosphere computer program by Gustafsson et al.

MOOG:

Stellar spectrum synthesis computer program by Sneden

MSWAVEF:

Momentum-Space WAVEFunction computer code by Barklem

NIST:

National Institute of Standards and Technology (USA)

RMATRX I:

R-matrix computer program for internal region problem by Berrington et al.

RMPS:

R-matrix with pseudo-states

STARK-B:

Stark broadening database

STGF:

R-matrix computer program for external region problem by Berrington et al.

SUPERSTRUCTURE:

Atomic structure computer program by Eissner et al.

TOPbase:

Opacity Project on-line atomic database

VALD:

Vienna Atomic Line Database

VAMDC:

Virtual Atomic and Molecular Data Centre

References

  • Adelman SA, Herschbach DR (1977) Asymptotic approximation for ionic-covalent configuration mixing in hydrogen and alkali hydrides. Mol Phys 33(3):793–809. doi:10.1080/00268977700100731

    Article  ADS  Google Scholar 

  • Ali AW, Griem HR (1965) Theory of resonance broadening of spectral lines by atom–atom impacts. Phys Rev 140:1044–1049. doi:10.1103/PhysRev.140.A1044

    Article  ADS  Google Scholar 

  • Ali AW, Griem HR (1966) Theory of resonance broadening of spectral lines by atom–atom impacts. Phys Rev 144:366. doi:10.1103/PhysRev.144.366

    Article  ADS  Google Scholar 

  • Allard N, Kielkopf J (1982) The effect of neutral nonresonant collisions on atomic spectral lines. Rev Mod Phys 54:1103–1182. doi:10.1103/RevModPhys.54.1103

    Article  ADS  Google Scholar 

  • Allard NF, Kielkopf JF (2009) Collisional effects in the far red wing of Lyman-\(\alpha \). A&A 493(3):1155–1160. doi:10.1051/0004-6361:200810294

    Article  ADS  Google Scholar 

  • Allard NF, Drira I, Gerbaldi M, Kielkopf J, Spielfiedel A (1998) New study of the quasi-molecular Lyman alpha satellites due to H-H and H-H(+) collisions. A&A 335:1124–1129

    ADS  Google Scholar 

  • Allard NF, Royer A, Kielkopf JF, Feautrier N (1999) Effect of the variation of electric-dipole moments on the shape of pressure-broadened atomic spectral lines. Phys Rev A 60(2):1021–1033. doi:10.1103/PhysRevA.60.1021

    Article  ADS  Google Scholar 

  • Allard NF, Kielkopf JF, Cayrel R, van ’t Veer-Menneret C (2008) Self-broadening of the hydrogen Balmer \(\alpha \) line. A&A 480(2):581–587. doi:10.1051/0004-6361:20078437

  • Allende Prieto C, García López RJ, Trujillo Bueno J (1997) The limited influence of pressure gradients on late-type stellar line asymmetries. ApJ 483:941–946

    Article  ADS  Google Scholar 

  • Allende Prieto C, Asplund M, Fabiani Bendicho P (2004) Center-to-limb variation of solar line profiles as a test of NLTE line formation calculations. A&A 423(3):1109–1117. doi:10.1051/0004-6361:20047050

    Article  ADS  Google Scholar 

  • Aller LH (1963) Astrophysics. The atmospheres of the sun and stars. The Ronald Press Company, New York

    Google Scholar 

  • Alonso A, Arribas S, Martinez-Roger C (1996) Determination of effective temperatures for an extended sample of dwarfs and subdwarfs (F0–K5). A&AS 117:227–254

    Article  ADS  Google Scholar 

  • Anderson PW (1949) Pressure broadening in the microwave and infra-red regions. Phys Rev 76(5):647–661. doi:10.1103/PhysRev.76.647

    Article  ADS  MATH  Google Scholar 

  • Anderson PW (1952) A method of synthesis of the statistical and impact theories of pressure broadening. Phys Rev 86:809–809. doi:10.1103/PhysRev.86.809

    Article  ADS  Google Scholar 

  • Andersen N (1981) Direct excitation in quasi-one-electron systems. Comm Atom Mol Phys 10(4):133–143

    Google Scholar 

  • Anstee SD (1992) The collisional broadening of alkali spectral lines by atomic hydrogen. PhD thesis, The University of Queensland

  • Anstee SD, O’Mara BJ (1991) An investigation of Brueckner’s theory of line broadening with application to the sodium D lines. MNRAS 253:549–560

    Article  ADS  Google Scholar 

  • Anstee SD, O’Mara BJ (1995) Width cross-sections for collisional broadening of s-p and p-s transitions by atomic hydrogen. MNRAS 276(3):859–866

    Article  ADS  Google Scholar 

  • Anstee SD, O’Mara BJ, Ross JE (1997) A determination of the solar abundance of iron from the strong lines of Fe I. MNRAS 284(1):202–212

    Article  ADS  Google Scholar 

  • Asplund M (2005) New light on stellar abundance analyses: departures from LTE and homogeneity. ARA&A 43(1):481–530. doi:10.1146/annurev.astro.42.053102.134001

    Article  ADS  Google Scholar 

  • Asplund M, Gustafsson B, Kiselman D, Eriksson K (1997) Line-blanketed model atmospheres for R Coronae Borealis stars and hydrogen-deficient carbon stars. A&A 318:521–534

    ADS  Google Scholar 

  • Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the Sun. ARA&A 47(1):481–522. doi:10.1146/annurev.astro.46.060407.145222

    Article  ADS  Google Scholar 

  • Ayres TR (1977) A reexamination of solar upper photosphere models, the calcium abundance, and empirical damping parameters. ApJ 213:296–308. doi:10.1086/155156

    Article  ADS  Google Scholar 

  • Ayres TR, Wiedemann GR (1989) Non-LTE CO, revisited. ApJ 338:1033–1046. doi:10.1086/167256

    Article  ADS  Google Scholar 

  • Badnell NR (1986) Dielectric recombination of Fe(22+) and Fe(21+). J Phys B: At Mol Phys 19:3827–3835. doi:10.1088/0022-3700/19/22/023

    Article  ADS  Google Scholar 

  • Badnell NR (1999) A perturbative approach to the coupled outer-region equations for the electron-impact excitation of neutral atoms. J Phys B: At Mol Opt Phys 32(2):5583–5591. doi:10.1088/0953-4075/32/23/312

    Article  ADS  Google Scholar 

  • Baird JP, Eckart MJ, Sandeman RJ (1979) The width of the Na D2 resonance line (lambda 5890) in atmospheres of helium and neon and atomic hydrogen. J Phys B: At Mol Phys 12(3):355. doi:10.1088/0022-3700/12/3/012

    Article  ADS  Google Scholar 

  • Baranger M (1958a) General impact theory of pressure broadening. Phys Rev 112(3):855–865. doi:10.1103/PhysRev.112.855

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Baranger M (1958b) Problem of overlapping lines in the theory of pressure broadening. Phys Rev 111(2):494–504. doi:10.1103/PhysRev.111.494

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Baranger M (1958c) Simplified quantum-mechanical theory of pressure broadening. Phys Rev 111:481–493. doi:10.1103/PhysRev.111.481

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Baranger M (1962) Spectral line broadening in plasmas. In: Bates DR (ed) Atomic and molecular processes. Academic Press, New York, p 493

    Chapter  Google Scholar 

  • Barklem PS (2007a) Electron-impact excitation of neutral oxygen. A&A 462(2):781–788. doi:10.1051/0004-6361:20066341

  • Barklem PS (2007b) Non-LTE Balmer line formation in late-type spectra: effects of atomic processes involving hydrogen atoms. A&A 466(1):327–337. doi:10.1051/0004-6361:20066686

    Article  ADS  Google Scholar 

  • Barklem PS (2008) Hydrogen lines. Phys Scr 2008(T133):014023. doi:10.1088/0031-8949/2008/T133/014023

    Article  Google Scholar 

  • Barklem PS (2015a) KAULAKYS: inelastic collisions between hydrogen atoms and Rydberg atoms. doi:10.5281/zenodo.50217. https://github.com/barklem/kaulakys

  • Barklem PS (2015b) MSWAVEF: momentum-Space Wavefunctions. doi:10.5281/zenodo.50218. https://github.com/barklem/mswavef

  • Barklem PS (2016) Excitation and charge transfer in low-energy hydrogen-atom collisions with neutral atoms: theory, comparisons, and application to Ca. Phys Rev A 93(4):042705. doi:10.1103/PhysRevA.93.042705

    Article  ADS  Google Scholar 

  • Barklem PS, Aspelund-Johansson J (2005) The broadening of Fe II lines by neutral hydrogen collisions. A&A 435(1):373–377. doi:10.1051/0004-6361:20042469

    Article  ADS  Google Scholar 

  • Barklem PS, Collet R (2016) Partition functions and equilibrium constants for diatomic molecules and atoms of astrophysical interest. A&A 588:A96. doi:10.1051/0004-6361/201526961

    Article  ADS  Google Scholar 

  • Barklem PS, O’Mara BJ (1997) The broadening of p-d and d-p transitions by collisions with neutral hydrogen atoms. MNRAS 290(1):102–106

    Article  ADS  Google Scholar 

  • Barklem PS, O’Mara BJ (1998) The broadening of strong lines of \(\text{ Ca }^{+}\), \(\text{ Mg }^{+}\) and \(\text{ Ba }^{+}\) by collisions with neutral hydrogen atoms. MNRAS 300(3):863–871. doi:10.1046/j.1365-8711.1998.01942.x

    Article  ADS  Google Scholar 

  • Barklem PS, O’Mara BJ (2000) Broadening of lines of Be II, Sr II and Ba II by collisions with hydrogen atoms and the solar abundance of strontium. MNRAS 311(3):535–540. doi:10.1046/j.1365-8711.2000.03090.x

    Article  ADS  Google Scholar 

  • Barklem PS, O’Mara BJ (2001) Comments on alternative calculations of the broadening of spectral lines of neutral sodium by H-atom collisions. J Phys B: At Mol Opt Phys 34(2):4785–4799. doi:10.1088/0953-4075/34/23/321

    Article  ADS  Google Scholar 

  • Barklem PS, Piskunov N (2003) Hydrogen Balmer lines as probes of stellar atmospheres. In: Piskunov N, Weiss WW, Gray DF (eds) Proceedings of the 210th symposium of the international astronomical union, vol 210. Astronomical Society of the Pacific, p E28

  • Barklem PS, Piskunov N (2015) HLINOP: Hydrogen LINe OPacity in stellar atmospheres, Astrophysics Source Code Library, record ascl:1507.008. doi:10.5281/zenodo.50215

  • Barklem PS, Anstee SD, O’Mara BJ (1998a) Line broadening cross sections for the broadening of transitions of neutral atoms by collisions with neutral hydrogen. PASA 15:336–338

    Article  ADS  Google Scholar 

  • Barklem PS, O’Mara BJ, Ross JE (1998) The broadening of d-f and f-d transitions by collisions with neutral hydrogen atoms. MNRAS 296(4):1057–1060. doi:10.1046/j.1365-8711.1998.01484.x

    Article  ADS  Google Scholar 

  • Barklem PS, Piskunov N, O’Mara BJ (2000a) A list of data for the broadening of metallic lines by neutral hydrogen collisions. A&AS 142:467–473. doi:10.1051/aas:2000167

    Article  ADS  Google Scholar 

  • Barklem PS, Piskunov N, O’Mara BJ (2000b) Self-broadening in Balmer line wing formation in stellar atmospheres. A&A 363:1091–1105

    ADS  Google Scholar 

  • Barklem PS, Piskunov N, O’Mara BJ (2000c) Self broadening of hydrogen lines: initial results. A&A 355:L5–L8

    ADS  Google Scholar 

  • Barklem PS, Stempels HC, Allende Prieto C, Kochukhov OP, Piskunov N, O’Mara BJ (2002) Detailed analysis of Balmer lines in cool dwarf stars. A&A 385:951–967. doi:10.1051/0004-6361:20020163

    Article  ADS  Google Scholar 

  • Barklem PS, Belyaev AK, Asplund M (2003) Inelastic H+Li and \(\text{ H }^{-}+\text{ Li }^{+}\) collisions and non-LTE Li I line formation in stellar atmospheres. A&A 409:L1–L4. doi:10.1051/0004-6361:20031199

    Article  ADS  Google Scholar 

  • Barklem PS, Belyaev AK, Dickinson AS, Gadéa FX (2010) Inelastic Na+H collision data for non-LTE applications in stellar atmospheres. A&A 519:A20. doi:10.1051/0004-6361/201015152

    Article  ADS  Google Scholar 

  • Barklem PS, Belyaev AK, Guitou M, Feautrier N, Gadéa FX, Spielfiedel A (2011) On inelastic hydrogen atom collisions in stellar atmospheres. A&A 530:94. doi:10.1051/0004-6361/201116745

    Article  ADS  Google Scholar 

  • Barklem PS, Belyaev AK, Spielfiedel A, Guitou M, Feautrier N (2012) Inelastic Mg+H collision data for non-LTE applications in stellar atmospheres. A&A 541:A80. doi:10.1051/0004-6361/201219081

    Article  ADS  Google Scholar 

  • Barklem PS, Anstee SD, O’Mara BJ (2015) abo-cross: Hydrogen broadening cross-section calculator, Astrophysics Source Code Library, record ascl:1507.007. doi:10.5281/zenodo.50216

  • Bartschat K, Zatsarinny O (2015) Close-coupling calculations for electron-atom collisions: benchmark studies and uncertainty estimates. Phys Scr 90(054):006. doi:10.1088/0031-8949/90/5/054006

    Google Scholar 

  • Bates DR (1954) Chap. 12. In: Kuiper GP (ed) The Earth as a planet. University of Chicago Press, p 625

  • Bates DR (1962) Theoretical treatment of collisions between atomic systems. In: Bates DR (ed) Atomic and molecular processes. Academic Press, New York, p 550

    Google Scholar 

  • Bates DR, McCarroll R (1958) Electron capture in slow collisions. Proc R Soc Lond Ser A Math Phys Sci 245(1241):175–183

    Article  ADS  MATH  Google Scholar 

  • Bates DR, Massey HSW, Stewart AL (1953) Inelastic collisions between atoms. I. General theoretical considerations. Proc R Soc Lond Ser A Math Phys Sci 216(1127):437–458

  • Bautista MA (1997) Atomic data from the IRON Project. XX. Photoionization cross sections and oscillator strengths for Fe I. A&AS 122:167–176. doi:10.1051/aas:1997327

    Article  ADS  Google Scholar 

  • Bautista MA, Pradhan AK (1995) Photoionization of neutral iron. J Phys B: At Mol Opt Phys 28(6):L173. doi:10.1088/0953-4075/28/6/004

    Article  ADS  Google Scholar 

  • Bautista MA, Romano P, Pradhan AK (1998) Resonance-averaged photoionization cross sections for astrophysical models. ApJS 118:259–265. doi:10.1086/313132

    Article  ADS  Google Scholar 

  • Bely O, van Regemorter H (1970) Excitation and ionization by electron impact. ARA&A 8:329. doi:10.1146/annurev.aa.08.090170.001553

    Article  ADS  Google Scholar 

  • Belyaev AK (1993) Theoretical investigations of charge exchange with ion excitation in atomic collisions at thermal energies. Phys Rev A 48(6):4299–4306. doi:10.1103/PhysRevA.48.4299

    Article  ADS  Google Scholar 

  • Belyaev AK (2009) Nonadiabatic effects in inelastic collisional processes. Phys Scr 80(4):048,113. doi:10.1088/0031-8949/80/04/048113

  • Belyaev AK (2010) Revised Born-Oppenheimer approach and a reprojection method for inelastic collisions. Phys Rev A 82(6):060701. doi:10.1103/PhysRevA.82.060701

    Article  ADS  Google Scholar 

  • Belyaev AK (2013a) Inelastic aluminium–hydrogen collision data for non-LTE applications in stellar atmospheres. A&A 560:A60. doi:10.1051/0004-6361/201322389

    Article  ADS  Google Scholar 

  • Belyaev AK (2013b) Model approach for low-energy inelastic atomic collisions and application to Al+H and \(\text{ Al }^{+}+\text{ H }^{-}\). Phys Rev A 88(5):052704. doi:10.1103/PhysRevA.88.052704

    Article  ADS  MathSciNet  Google Scholar 

  • Belyaev AK, Barklem PS (2003) Cross sections for low-energy inelastic H+Li collisions. Phys Rev A 68(6):062703. doi:10.1103/PhysRevA.68.062703

    Article  ADS  Google Scholar 

  • Belyaev AK, Lebedev OV (2011) Nonadiabatic nuclear dynamics of atomic collisions based on branching classical trajectories. Phys Rev A 84(1):014701. doi:10.1103/PhysRevA.84.014701

    Article  ADS  Google Scholar 

  • Belyaev AK, Tserkovnyi SI (1987) Opt Spectrosc 63:968

    Google Scholar 

  • Belyaev AK, Grosser J, Hahne J, Menzel T (1999) Ab initio cross sections for low-energy inelastic H+Na collisions. Phys Rev A 60(3):2151–2158. doi:10.1103/PhysRevA.60.2151

    Article  ADS  Google Scholar 

  • Belyaev AK, Egorova D, Grosser J, Menzel T (2001) Electron translation and asymptotic couplings in low-energy atomic collisions. Phys Rev A 64(5):052701. doi:10.1103/PhysRevA.64.052701

    Article  ADS  Google Scholar 

  • Belyaev AK, Dalgarno A, McCarroll R (2002) The dependence of nonadiabatic couplings on the origin of electron coordinates. J Chem Phys 116(13):5395–5400. doi:10.1063/1.1457443

    Article  ADS  Google Scholar 

  • Belyaev AK, Barklem PS, Dickinson AS, Gadéa FX (2010) Cross sections for low-energy inelastic H + Na collisions. Phys Rev A 81(3):032706. doi:10.1103/PhysRevA.81.032706

    Article  ADS  Google Scholar 

  • Belyaev AK, Barklem PS, Spielfiedel A, Guitou M, Feautrier N, Rodionov DS, Vlasov DV (2012) Cross sections for low-energy inelastic Mg+H and \(\text{ Mg }^{+} + \text{ H }^{-}\) collisions. Phys Rev A 85(3):32704. doi:10.1103/PhysRevA.85.032704

    Article  ADS  Google Scholar 

  • Belyaev AK, Yakovleva SA, Barklem PS (2014) Inelastic silicon–hydrogen collision data for non-LTE applications in stellar atmospheres. A&A 572:A103. doi:10.1051/0004-6361/201424714

    Article  ADS  Google Scholar 

  • Bergemann M, Cescutti G (2010) Chromium: NLTE abundances in metal-poor stars and nucleosynthesis in the Galaxy. A&A 522:A9. doi:10.1051/0004-6361/201014250

    Article  ADS  Google Scholar 

  • Bergemann M, Hansen CJ, Bautista M, Ruchti G (2012a) NLTE analysis of Sr lines in spectra of late-type stars with new R-matrix atomic data. A&A 546:A90. doi:10.1051/0004-6361/201219406

    Article  ADS  Google Scholar 

  • Bergemann M, Lind K, Collet R, Magic Z, Asplund M (2012) Non-LTE line formation of Fe in late-type stars-I. Standard stars with 1D and mean-3D model atmospheres. MNRAS 427(1):27–49. doi:10.1111/j.1365-2966.2012.21687.x

    Article  ADS  Google Scholar 

  • Berkner A, Schweitzer A, Hauschildt PH (2015) 3D Multi-level non-LTE radiative transfer for the CO molecule. In: Cambridge workshop on cool stars, stellar systems, and the Sun, vol 18, pp 689–692

  • Bernath PF (2009) Molecular astronomy of cool stars and sub-stellar objects. Int Rev Phys Chem 28:681–709. doi:10.1080/01442350903292442

    Article  Google Scholar 

  • Bernath PF, Colin R (2009) Revised molecular constants and term values for the X2\(\varPi \) and B2\(\varSigma \)+ states of OH. J Mol Spec 257(1):20–23. doi:10.1016/j.jms.2009.06.003

    Article  ADS  Google Scholar 

  • Berrington KA, Burke PG, Butler K, Seaton MJ, Storey PJ, Taylor KT, Yan Y (1987) Atomic data for opacity calculations. II. Computational methods. J Phys B: At Mol Phys 20(23):6379–6397. doi:10.1088/0022-3700/20/23/027

    Article  ADS  Google Scholar 

  • Berrington KA, Eissner WB, Norrington PH (1995) RMATRX1: Belfast atomic R-matrix codes. Comput Phys Commun 92(2):290–420. doi:10.1016/0010-4655(95)00123-8

    Article  ADS  Google Scholar 

  • Blackwell-Whitehead RJ, Pickering JC, Pearse O, Nave G (2005) Hyperfine structure measurements of neutral manganese with Fourier transform spectroscopy. ApJS 157:402–409. doi:10.1086/427924

    Article  ADS  Google Scholar 

  • Bohm D (1951) Quantum theory. Dover Publications, New York

    Google Scholar 

  • Bohr N (1913a) I. On the constitution of atoms and molecules. Philos Mag Ser 6 26(151):1–25. doi:10.1080/14786441308634955

  • Bohr N (1913b) The spectra of helium and hydrogen. Nature 92:231–232. doi:10.1038/092231d0

    Article  ADS  Google Scholar 

  • Bohr N (1913c) XXXVII. On the constitution of atoms and molecules. Philos Mag Ser 6 26(153):476–502. doi:10.1080/14786441308634993

  • Borrero JM, Bellot Rubio LR, Barklem PS, del Toro Iniesta JC (2003) Accurate atomic parameters for near-infrared spectral lines. A&A 404:749–762. doi:10.1051/0004-6361:20030548

    Article  ADS  Google Scholar 

  • Bray I (1994a) Convergent close-coupling calculation of electron-sodium scattering. Phys Rev A 49(1):R1–R4. doi:10.1103/PhysRevA.49.R1

    Article  ADS  Google Scholar 

  • Bray I (1994b) Convergent close-coupling method for the calculation of electron scattering on hydrogen-like targets. Phys Rev A 49:1066–1082. doi:10.1103/PhysRevA.49.1066

    Article  ADS  Google Scholar 

  • Bray I, Fursa DV (2011) Benchmark cross sections for electron-impact total single ionization of helium. J Phys B: At Mol Opt Phys 44(6):061001. doi:10.1088/0953-4075/44/6/061001

    Article  ADS  Google Scholar 

  • Bray I, Stelbovics AT (1992) Convergent close-coupling calculations of electron-hydrogen scattering. Phys Rev A 46(1):6995–7011. doi:10.1103/PhysRevA.46.6995

    Article  ADS  Google Scholar 

  • Bray I, Stelbovics AT (1995) The convergent close-coupling method for a Coulomb three-body problem. Comput Phys Commun 85(1):1–17. doi:10.1016/0010-4655(94)00134-N

    Article  ADS  Google Scholar 

  • Bray I, Fursa DV, Kheifets AS, Stelbovics AT (2002) Electrons and photons colliding with atoms: development and application of the convergent close-coupling method. J Phys B: At Mol Opt Phys 35(15):R117. doi:10.1088/0953-4075/35/15/201

    Article  ADS  Google Scholar 

  • Bray I, Fursa DV, Kadyrov AS, Stelbovics AT, Kheifets AS, Mukhamedzhanov AM (2012) Electron- and photon-impact atomic ionisation. Phys Rep 520(3):135–174. doi:10.1016/j.physrep.2012.07.002

    Article  ADS  Google Scholar 

  • Brissaud A, Frisch U (1971) Theory of Stark broadening—II exact line profile with model microfield. JQSRT 11(12):1767–1783. doi:10.1016/0022-4073(71)90021-5

    Article  ADS  Google Scholar 

  • Brueckner KA (1971) Collision broadening by neutral hydrogen. ApJ 169:621. doi:10.1086/151181

    Article  ADS  Google Scholar 

  • Burgess A, Summers HP (1976) The recombination and level populations of ions. I—hydrogen and hydrogenic ions. MNRAS 174:345–391

    Article  ADS  Google Scholar 

  • Burke PG, Berrington KA (1993) Atomic and molecular processes: an R-matrix approach. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Burke VM, Noble CJ (1995) Farm—a flexible asymptotic R-matrix package. Comput Phys Commun 85(3):471–500. doi:10.1016/0010-4655(94)00178-5

    Article  ADS  Google Scholar 

  • Burke PG, Hibbert A, Robb WD (1971) Electron scattering by complex atoms. J Phys B: At Mol Phys 4(2):153–161. doi:10.1088/0022-3700/4/2/002

    Article  ADS  Google Scholar 

  • Caffau E, Ludwig HG, Steffen M, Ayres TR, Bonifacio P, Cayrel R, Freytag B, Plez B (2008) The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmospheric models. A&A 488:1031–1046. doi:10.1051/0004-6361:200809885

    Article  ADS  Google Scholar 

  • Carbon DF, Milkey RW, Heasley JN (1976) Departures from LTE in the fundamental bands of CO in cool stars. ApJ 207:253–262. doi:10.1086/154489

    Article  ADS  Google Scholar 

  • Carlsson M, Rutten RJ, Shchukina NG (1992) The formation of the Mg I emission features near 12 microns. A&A 253:567–585

    ADS  Google Scholar 

  • Castelli F, Kurucz RL (2001) Ultraviolet spectra for lambda Boo (HD 125162) computed with H2 opacities and Lyman-alpha H-H and H-H+ opacities. A&A 372:260–275. doi:10.1051/0004-6361:20010445

    Article  ADS  Google Scholar 

  • Castelli F, Kurucz RL (2010) New Fe II energy levels from stellar spectra. A&A 520:A57. doi:10.1051/0004-6361/201015126

    Article  ADS  Google Scholar 

  • Castelli F, Kurucz R, Hubrig S (2009) New identified \((^{\hat{}}{3\text{ H }})\)4d-\((^{\hat{}}{3\text{ H }})\)4f transitions of Fe II from UVES spectra of HR 6000 and 46 Aquilae. A&A 508:401–408. doi:10.1051/0004-6361/200912518

    Article  ADS  Google Scholar 

  • Castelli F, Kurucz RL, Cowley CR (2015) New Mn II energy levels from the STIS-HST spectrum of the HgMn star HD 175640. A&A 580:A10. doi:10.1051/0004-6361/201525903

    Article  ADS  Google Scholar 

  • Cayrel R, Traving G (1960) Zur Frage der Druckverbreiterung der solaren Balmerlinien. Z Astrophys 50:239

    ADS  Google Scholar 

  • Cayrel R, Depagne E, Spite M, Hill V, Spite F, François P, Plez B, Beers T, Primas F, Andersen J, Barbuy B, Bonifacio P, Molaro P, Nordström B (2004) First stars V—abundance patterns from C to Zn and supernova yields in the early Galaxy. A&A 416:1117–1138. doi:10.1051/0004-6361:20034074

    Article  ADS  Google Scholar 

  • Cayrel R, Van t Veer-Menneret C, Allard NF, Stehle C (2011) The H-alpha Balmer line as an effective temperature criterion. A&A 531:A83. doi:10.1051/0004-6361/201116911

  • Chamberlain JW (1956) Excitation in nebulae: charge transfer and the Cassiopeia radio source. ApJ 124:390. doi:10.1086/146233

    Article  ADS  Google Scholar 

  • Chieffi A, Limongi M (2004) Explosive yields of massive stars from Z = 0 to Z = Zsolar. ApJ 608:405–410. doi:10.1086/392523

    Article  ADS  Google Scholar 

  • Christlieb N, Beers TC, Barklem PS, Bessell M, Hill V, Holmberg J, Korn AJ, Marsteller B, Mashonkina L, Qian YZ, Rossi S, Wasserburg GJ, Zickgraf FJ, Kratz KL, Nordström B, Pfeiffer B, Rhee J, Ryan SG (2004) The Hamburg/ESO R-process Enhanced Star survey (HERES). I. Project description, and discovery of two stars with strong enhancements of neutron-capture elements. A&A 428:1027–1037. doi:10.1051/0004-6361:20041536

    Article  ADS  Google Scholar 

  • Civiš S, Ferus M, Chernov VE, Zanozina EM (2013) Infrared transitions and oscillator strengths of Ca and Mg. A&A 554:A24. doi:10.1051/0004-6361/201321052

    Article  ADS  Google Scholar 

  • Cohen JG, Christlieb N, McWilliam A, Shectman S, Thompson I, Wasserburg GJ, Ivans I, Dehn M, Karlsson T, Melendez J (2004) Abundances in very metal-poor dwarf stars. ApJ 612:1107–1135. doi:10.1086/422576

    Article  ADS  Google Scholar 

  • Cooper J, Smith EW, Vidal CR (1974) Influence of ion dynamics on H\(\alpha \) and H\(\beta \) at low densities. J Phys B: At Mol Phys 7(4):L101–L105. doi:10.1088/0022-3700/7/4/005

    Article  ADS  Google Scholar 

  • Cowan RD (1968) Theoretical calculation of atomic spectra using digital computers. J Opt Soc Am 58(6):808. doi:10.1364/JOSA.58.000808

    Article  ADS  Google Scholar 

  • Cowan RD (1981) The Theory of Atomic Structure and Spectra. Los Alamos Series in Basic and Applied Sciences. University of California Press, Berkley, Los Angeles, London, p 650

  • Crawford DL (1958) Two-dimensional spectral classification by narrow-band photometry for B stats in clusters and associations. ApJ 128:185. doi:10.1086/146536

    Article  ADS  Google Scholar 

  • Croft H, Dickinson AS, Gadéa FX (1999) A theoretical study of mutual neutralization in \(\text{ Li }^{+}+\text{ H }^{-}\) collisions. J Phys B: At Mol Opt Phys 32(1):81–94. doi:10.1088/0953-4075/32/1/008

    Article  ADS  Google Scholar 

  • Cunto W, Mendoza C, Ochsenbein F, Zeippen CJ (1993) Topbase at the CDS. A&A 275:L5

  • Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94(1):7221–7230. doi:10.1063/1.460205

    Article  ADS  Google Scholar 

  • Däppen W, Anderson L, Mihalas D (1987) Statistical mechanics of partially ionized stellar plasma—the Planck–Larkin partition function, polarization shifts, and simulations of optical spectra. ApJ 319:195–206. doi:10.1086/165446

    Article  ADS  Google Scholar 

  • Delbouille L, Roland G, Neven L (1990) Atlas photometrique du spectre solaire de [lambda] 3000 a [lambda] 10000. Universite de Liege, Institut d’Astrophysique, Liege

  • Deridder G, van Rensbergen W (1976) Tables of damping constants of spectral lines broadened by H and He. A&AS 23:147

    ADS  Google Scholar 

  • Derouich M, Barklem PS (2007) Spin depolarizing effect in collisions with neutral hydrogen. II. Application to simple/complex ions in spherically symmetric states. A&A 462(3):1171–1177. doi:10.1051/0004-6361:20066066

  • Derouich M, Sahal-Bréchot S, Barklem PS (2003a) Collisional depolarization and transfer rates of spectral lines by atomic hydrogen. II. Application to d states of neutral atoms. A&A 409:369–373. doi:10.1051/0004-6361:20031058

    Article  ADS  Google Scholar 

  • Derouich M, Sahal-Bréchot S, Barklem PS, O’Mara BJ (2003b) Semi-classical theory of collisional depolarization of spectral lines by atomic hydrogen I. Application to p states of neutral atoms. A&A 404:763–773. doi:10.1051/0004-6361:20030568

    Article  ADS  Google Scholar 

  • Derouich M, Sahal-Bréchot S, Barklem PS (2004a) Collisional depolarization and transfer rates of spectral lines by atomic hydrogen. IV. Application to ionised atoms. A&A 426:707–715. doi:10.1051/0004-6361:20047188

    Article  ADS  Google Scholar 

  • Derouich M, Sahal-Bréchot S, Barklem PS (2004b) On the collisional depolarization and transfer rates of spectral lines by atomic hydrogen. III. Application to f-states of neutral atoms. A&A 414:373–376. doi:10.1051/0004-6361:20034144

    Article  ADS  Google Scholar 

  • Derouich M, Barklem PS, Sahal-Bréchot S (2005a) Spin depolarizing effect in collisions of simple/complex atoms in spherically symmetric states with neutral hydrogen. A&A 441(1):395–406. doi:10.1051/0004-6361:20053087

    Article  ADS  Google Scholar 

  • Derouich M, Sahal-Bréchot S, Barklem PS (2005b) Collisional depolarization of the lines of complex atoms/ions by neutral hydrogen. A&A 434(2):779–784. doi:10.1051/0004-6361:20042192

    Article  ADS  Google Scholar 

  • Derouich M, Radi A, Barklem PS (2015) Unified numerical model of collisional depolarization and broadening rates that are due to hydrogen atom collisions. A&A 584:A64. doi:10.1051/0004-6361/201526661

    Article  ADS  Google Scholar 

  • Dickinson AS, Poteau R, Gadéa FX (1999) An ab initio study of mutual neutralization in \(\text{ Na }^{+}+\text{ H }^{-}\) collisions. J Phys B: At Mol Opt Phys 32(23):5451–5461. doi:10.1088/0953-4075/32/23/303

    Article  ADS  Google Scholar 

  • Docken KK, Hinze J (1972) LiH potential curves and wavefunctions for X 1\(\varSigma \)+, A 1\(\varSigma \)+, B 1\(\varPi \), 3\(\varSigma \)+, and 3\(\varPi \). J Chem Phys 57(11):4928–4936. doi:10.1063/1.1678164

    Article  ADS  Google Scholar 

  • Drawin HW (1968) Zur formelmäßigen Darstellung des Ionisierungsquerschnitts für den Atom-Atomstoß und über die Ionen-Elektronen-Rekombination im dichten Neutralgas. Z Phys 211(4):404–417. doi:10.1007/BF01379963

    Article  ADS  Google Scholar 

  • Drawin HW (1969) Influence of atom–atom collisions on the collisional–radiative ionization and recombination coefficients of hydrogen plasmas. Z Phys 225(5):483–493. doi:10.1007/BF01392775

    Article  ADS  Google Scholar 

  • Drawin HW, Emard F (1973) Atom-atom excitation and ionization in shock waves of the noble gases. Phys Lett A 43(4):333–335. doi:10.1016/0375-9601(73)90331-9

    Article  ADS  Google Scholar 

  • Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) GRASP: a general-purpose relativistic atomic structure program. Comput Phys Commun 55:425–456. doi:10.1016/0010-4655(89)90136-7

    Article  ADS  Google Scholar 

  • Ehrich H, Kelleher DE (1980) Experimental investigation of plasma-broadened hydrogen Balmer lines at low electron densities. Phys Rev A 21:319–334. doi:10.1103/PhysRevA.21.319

    Article  ADS  Google Scholar 

  • Eissner W, Jones M, Nussbaumer H (1974) Techniques for the calculation of atomic structures and radiative data including relativistic corrections. Comput Phys Commun 8:270–306. doi:10.1016/0010-4655(74)90019-8

    Article  ADS  Google Scholar 

  • Ekman J, Jönsson P, Gustafsson S, Hartman H, Gaigalas G, Godefroid MR, Froese Fischer C (2014) Calculations with spectroscopic accuracy: energies, transition rates, and Landé gJ-factors in the carbon isoelectronic sequence from Ar XIII to Zn XXV. A&A 564:A24. doi:10.1051/0004-6361/201323163

    Article  ADS  Google Scholar 

  • Engleman R, Litzén U, Lundberg H, Wyart JF (1998) The Pd I spectrum, term system, isotope shift and hyperfine structure—revised and extended analysis based on FTS emission spectroscopy. Phys Scr 57:345–364. doi:10.1088/0031-8949/57/3/006

    Article  ADS  Google Scholar 

  • Engström L, Lundberg H, Nilsson H, Hartman H, Bäckström E (2014) The FERRUM project: experimental transition probabilities from highly excited even 5s levels in Cr II. A&A 570:A34. doi:10.1051/0004-6361/201424762

    Article  ADS  Google Scholar 

  • Errea LF, Méndez L, Mó O, Riera A (1986) Nonadiabatic ionic-covalent transitions. Exponential-linear model for the charge exchange and neutralization reactions Na+H \(\leftrightarrow \) \(\text{ Na }^{+}+\text{ H }^{-}\). J Chem Phys 84(1):147–151. doi:10.1063/1.450190

    Article  ADS  Google Scholar 

  • Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878. doi:10.1103/PhysRev.124.1866

    Article  ADS  MATH  Google Scholar 

  • Fano U, Cooper JW (1965) Line profiles in the far-uv absorption spectra of the rare gases. Phys Rev 137:1364–1379. doi:10.1103/PhysRev.137.A1364

    Article  ADS  MathSciNet  Google Scholar 

  • Faurobert-Scholl M, Feautrier N, Machefert F, Petrovay K, Spielfiedel A (1995) Turbulent magnetic fields in the solar photosphere: diagnostics and interpretation. A&A 298:289

    ADS  Google Scholar 

  • Field GB, Steigman G (1971) Charge transfer and ionization equilibrium in the interstellar medium. ApJ 166:59. doi:10.1086/150941

    Article  ADS  Google Scholar 

  • Fischer CF (2009) Evaluating the accuracy of theoretical transition data. Phys Scr T134(014):019. doi:10.1088/0031-8949/2009/T134/014019

    Google Scholar 

  • Fischer CF, Verdebout S, Godefroid M, Rynkun P, Jönsson P, Gaigalas G (2013) Toward calculations with spectroscopic accuracy: the 2s2.2p \({2\text{ Po }}_{3/2}\) - 2s2p2 \({4\text{ P }}_{5/2}\) excitation energy in Boron. arXiv:1310.2394 [physics]

  • Fleck I, Grosser J, Schnecke A, Steen W, Voigt H (1991) Na atom excitation in low energy H+Na collisions. J Phys B: At Mol Opt Phys 24(1):4017–4023. doi:10.1088/0953-4075/24/18/015

    Article  ADS  Google Scholar 

  • Foley HM (1946) The pressure broadening of spectral lines. Phys Rev 69(11–12):616–628. doi:10.1103/PhysRev.69.616

    Article  ADS  Google Scholar 

  • Frisch U, Brissaud A (1971) Theory of Stark broadening—I soluble scalar model as a test. JQSRT 11(12):1753–1766. doi:10.1016/0022-4073(71)90020-3

    Article  ADS  Google Scholar 

  • Fuhrmann K, Axer M, Gehren T (1994) Balmer lines in cool dwarf stars II. Effective temperatures and calibration of colour indices. A&A 285:585–594

    ADS  Google Scholar 

  • Fursa DV, Bray I (1997) Convergent close-coupling calculations of electron scattering on helium-like atoms and ions: electron-beryllium scattering. J Phys B: At Mol Opt Phys 30(24):5895. doi:10.1088/0953-4075/30/24/023

    Article  ADS  Google Scholar 

  • Gadéa FX, Boutalib A (1993) Computation and assignment of radial couplings using accurate diabatic data for the LiH molecule. J Phys B: At Mol Opt Phys 26(1):61–74. doi:10.1088/0953-4075/26/1/006

    Article  ADS  Google Scholar 

  • Gray RO (1999) SPECTRUM: a stellar spectral synthesis program. Astrophysics Source Code Library, ascl:9910002

  • Grevesse N, Noels A, Sauval AJ (1996) Standard abundances. In: Holt S.S., Sonneborn G (eds) Astronomical society of the Pacific conference series. Proceedings of the sixth annual October astrophysics conference in College Park, Maryland. Astronomical Society of the Pacific, vol 99, p 117

  • Grice R, Herschbach DR (1974) Long-range configuration interaction of ionic and covalent states. Mol Phys 27(1):159–175. doi:10.1080/00268977400100131

    Article  ADS  Google Scholar 

  • Griem H (1954) Starkeffekt-Verbreiterung der Balmer-Linien bei großen Elektronendichten. Z Phys 137(3):280–294. doi:10.1007/BF01339151

    Article  ADS  Google Scholar 

  • Griem HR (1962) Wing formulae for stark-broadened hydrogen and hydrogenic lines. ApJ 136:422. doi:10.1086/147394

    Article  ADS  Google Scholar 

  • Griem HR (1974) Spectral line broadening by plasmas. Academic Press, New York

    Google Scholar 

  • Griem HR (1997) Principles of plasma spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Griem HR, Kolb AC, Shen KY (1959) Stark broadening of hydrogen lines in a plasma. Phys Rev 116(1):4–16. doi:10.1103/PhysRev.116.4

    Article  ADS  MATH  Google Scholar 

  • Griffin D, Mitnik D, Colgan J, Pindzola M (2001) Electron-impact excitation of lithium. Phys Rev A 64(3). doi:10.1103/PhysRevA.64.032718

  • Grosser J, Menzel T, Belyaev AK (1999) Approach to electron translation in low-energy atomic collisions. Phys Rev A 59(2):1309–1316. doi:10.1103/PhysRevA.59.1309

    Article  ADS  Google Scholar 

  • Guitou M, Spielfiedel A, Feautrier N (2010) Accurate potential energy functions and non-adiabatic couplings in the Mg+H system. Chem Phys Lett 488(4–6):145–152. doi:10.1016/j.cplett.2010.02.031

    Article  ADS  Google Scholar 

  • Guitou M, Belyaev AK, Barklem PS, Spielfiedel A, Feautrier N (2011) Inelastic Mg+H collision processes at low energies. J Phys B: At Mol Opt Phys 44(3):035202. doi:10.1088/0953-4075/44/3/035202

    Article  ADS  Google Scholar 

  • Gurtovenko EA, Kostik RI (1981) On the establishment of internally consistent solar scales of oscillator strengths and abundances of chemical elements. I–oscillator strengths for 865 FeI lines iron abundance. A&AS 46:239–248

    ADS  Google Scholar 

  • Gurtovenko EA, Kostik RI (1982) On the establishment of internally consistent solar scales of oscillator strengths and abundances of chemical elements. III–oscillator strengths obtained from equivalent widths of 360 FeI lines. A&AS 47:193–197

    ADS  Google Scholar 

  • Gustafsson B, Melendez J, Asplund M, Yong D (2010) The chemical composition of solar-type stars in comparison with that of the Sun. Astrophys Space Sci 328(1):185–191. doi:10.1007/s10509-009-0257-6

    Article  ADS  Google Scholar 

  • Hibbert A (1975) CIV3—a general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths. Comput Phys Commun 9(3):141–172. doi:10.1016/0010-4655(75)90103-4

    Article  ADS  Google Scholar 

  • Hibbert A, Dourneuf ML, Lan VK (1977) Atomic polarizabilities and polarized pseudo-states in the multiconfigurational approach. II. First row atoms and ions. J Phys B: At. Mol Phys 10(6):1015–1025. doi:10.1088/0022-3700/10/6/012

    Article  Google Scholar 

  • Hickman AP, Olson RE, Pascale J (1983) Theoretical approaches to low-energy collisions of Rydberg atoms with atoms and ions. In: Stebbings RF, Dunning FB (eds) Rydberg states of atoms and molecules. Cambridge University Press, Cambridge, p 187

    Google Scholar 

  • Hinkle KH, Lambert DL (1975) Formation of molecular lines in stellar atmospheres. MNRAS 170:447–474

    Article  ADS  Google Scholar 

  • Hoang Binh D, van Regemorter H (1995) The impulse approximation for the broadening of Mg I infrared lines by collisions with neutral hydrogen. J Phys B: At Mol Opt Phys 28(1):3147–3161. doi:10.1088/0953-4075/28/15/009

    Article  ADS  Google Scholar 

  • Hoang Binh D, van Regemorter H (1997) Non-hydrogenic wavefunctions in momentum space. J Phys B: At Mol Opt Phys 30(1):2403–2416. doi:10.1088/0953-4075/30/10/014

    Article  ADS  Google Scholar 

  • Holweger H (1971) Damping and solar abundance of sodium from Na I Fraunhofer lines. A&A 10:128

    ADS  Google Scholar 

  • Hubeny I, Mihalas D (2014) Theory of stellar atmospheres. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, IV. Constants Of diatomic molecules. van Nostrand Reinhold, New York

    Book  Google Scholar 

  • Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem Ref Data 36(2):389. doi:10.1063/1.2436891

    Article  ADS  Google Scholar 

  • Irikura KK (2009) Erratum: Experimental vibrational zero-point energies: diatomic molecules [J. Phys. Chem. Ref. Data 36, 389–397 (2007)]. J Phys Chem Ref Data 38(3):749. doi:10.1063/1.3167794

  • Irwin AW (1981) Polynomial partition function approximations of 344 atomic and molecular species. ApJS 45:621–633. doi:10.1086/190730

    Article  ADS  Google Scholar 

  • Johansson S (2009) A half-life with Fe II: tight bonds and loose ends. Phys Scr 2009(T134):014013. doi:10.1088/0031-8949/2009/T134/014013

    Article  Google Scholar 

  • Johansson S, Litzén U, Lundberg H, Zhang Z (2003) Experimental f-value and isotopic structure for the Ni I line blended with [O I] at 6300 Å. ApJL 584:L107–L110. doi:10.1086/374037

    Article  ADS  Google Scholar 

  • Judge PG (1986) Constraints on the outer atmospheric structure of late-type giant stars with IUE—methods and application to Arcturus (Alpha Boo K2III). MNRAS 221:119–153

    Article  ADS  Google Scholar 

  • Karlsson T, Gustafsson B (2005) Stochastic chemical enrichment in metal-poor systems. II. Abundance ratios and scatter. A&A 436:879–894. doi:10.1051/0004-6361:20042168

    Article  ADS  Google Scholar 

  • Kaulakys B (1985) Analytical expressions for cross sections of Rydberg-neutral inelastic collisions. J Phys B: At Mol Phys 18(6):L167–L170. doi:10.1088/0022-3700/18/6/004

    Article  ADS  Google Scholar 

  • Kaulakys BP (1986) Free electron model for inelastic collisions between neutral atomic particles and Rydberg atoms. JETP 91:391–403

    Google Scholar 

  • Kaulakys B (1991) Free electron model for collisional angular momentum mixing of high Rydberg atoms. J Phys B: At Mol Phys 24(5):L127–L132. doi:10.1088/0953-4075/24/5/004

    Article  ADS  Google Scholar 

  • Kepple P, Griem HR (1968) Improved stark profile calculations for the hydrogen lines H-alpha, H-beta, H-gamma, and H-delta. Phys Rev 173(1):317–325. doi:10.1103/PhysRev.173.317

    Article  ADS  Google Scholar 

  • Kerkeni B, Barklem PS, Spielfiedel A, Feautrier N (2004) Collisional broadening of Mg, Sr, Ca and Na resonance lines by atomic hydrogen. J Phys B: At Mol Opt Phys 37(3):677–688. doi:10.1088/0953-4075/37/3/012

    Article  ADS  Google Scholar 

  • Kielkopf JF, Allard NF (1998) Observation of the far wing of Lyman alpha due to neutral atom and ion collisions in a laser-produced plasma. Phys Rev A 58(6):4416–4425. doi:10.1103/PhysRevA.58.4416

    Article  ADS  Google Scholar 

  • Kramida AE (2011) The program LOPT for least-squares optimization of energy levels. Comput Phys Commun 182(2):419–434. doi:10.1016/j.cpc.2010.09.019

    Article  ADS  MATH  Google Scholar 

  • Kramida A, Sansonetti JE (2013) Energy levels and spectral lines of singly ionized manganese (Mn II). ApJS 205:14. doi:10.1088/0067-0049/205/2/14

    Article  ADS  Google Scholar 

  • Kramida A, Ralchenko Y, Reader J (2014) Current status of atomic spectroscopy databases at NIST. In: APS Division of atomic, molecular and optical physics meeting abstracts. American Physical Society, p 1047

  • Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2015) Nist atomic spectra database (ver. 5.2), [online]. Available: http://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD

  • Krsljanin V, Peach G (1993) The broadening of sodium lines by atomic hydrogen. In: Spectral line shapes, vol 7. Nova Science, New York, p 527

  • Kupka F, Piskunov N, Ryabchikova TA, Stempels HC, Weiss WW (1999) VALD-2: progress of the Vienna atomic line data base. A&AS 138(1):15. doi:10.1051/aas:1999267

    Article  Google Scholar 

  • Kurucz RL (1973) Semiempirical calculation of gf values: Sc II (3d+4s)2 - (3d+4s) 4p, a detailed example. SAO Special, Report 351

  • Kurucz RL (1981) Semiempirical calculation of gf values, IV: Fe II. SAO Special, Report 390

  • Kurucz RL (1990) Why I study the solar spectrum. In: Proceedings of the 3rd international colloquium of the Royal Netherlands Academy of Arts and Sciences. North Holland, Amsterdam, p 20

  • Kurucz RL (1992) Atomic and molecular data for opacity calculations. Revista Mexicana de Astronomia y Astrofisica 23:45

    ADS  Google Scholar 

  • Kurucz RL (1993) Atomic data for interpreting stellar spectra: isotopic and hyperfine data. Phys Scr T 47:110–117. doi:10.1088/0031-8949/1993/T47/017

    Article  ADS  Google Scholar 

  • Kurucz RL (2011) Including all the lines. Can J Phys 89:417–428. doi:10.1139/p10-104

    Article  ADS  Google Scholar 

  • Kurucz RL (2013) ATLAS12: Opacity sampling model atmosphere program. Astrophysics Source Code Library, ascl:1303024

  • Kurucz RL (2016) Web page of R. L. Kurucz. http://kurucz.harvard.edu/

  • Kurucz RL, Peytremann E (1975) A table of semiempirical gf values. Part 1: wavelengths: 5.2682 nm to 272.3380 nm. SAO Special Report 362

  • Lambert DL (1993) Quantitative stellar spectroscopy with large optical telescopes. Phys Scr T 47:186–198. doi:10.1088/0031-8949/1993/T47/030

    Article  ADS  Google Scholar 

  • Lambert J, Josselin E, Ryde N, Faure A (2013) NLTE water lines in Betelgeuse-like atmospheres. In: Kervella P, Le Bertre T, Perrin G (eds) EAS publications series, vol 60, pp 111–119. doi:10.1051/eas/1360012

  • Lambert J, Josselin E, Ryde N, Faure A (2015) A new nonlocal thermodynamical equilibrium radiative transfer method for cool stars. Method and numerical implementation. A&A 580:A50. doi:10.1051/0004-6361/201322852

    Article  ADS  Google Scholar 

  • Landau LD (1932a) Z Phys Sowjetunion 1:88

    Google Scholar 

  • Landau LD (1932b) Z Phys Sowjetunion 2:46

    Google Scholar 

  • Lang KR (1999) Astrophysical formulae. Springer, New York

    MATH  Google Scholar 

  • Lawler JE, Sneden C, Cowan JJ, Ivans II, Hartog EAD (2009) Improved laboratory transition probabilities for Ce II, application to the cerium abundances of the Sun and five r-process-rich, metal-poor stars, and rare Earth lab data summary. ApJS 182(1):51. doi:10.1088/0067-0049/182/1/51

    Article  ADS  Google Scholar 

  • Le Dourneuf M (1976) Doctorat d’État, University of Paris VI, available from CNRS under registration AO12658

  • Leininger T, Gadéa FX, Dickinson AS (2000) Broadening of the sodium 568.8, 589, 615.4 and 819.4 nm lines by atomic hydrogen. J Phys B: At Mol Opt Phys 33(9):1805–1817. doi:10.1088/0953-4075/33/9/310

  • Lemaire JL, Chotin JL, Rostas F (1985) Broadening and shift parameters of the sodium D lines perturbed by atomic hydrogen. J Phys B: At Mol Phys 18(1):95. doi:10.1088/0022-3700/18/1/011

    Article  ADS  Google Scholar 

  • Lemke M (1997) Extended VCS Stark broadening tables for hydrogen—Lyman to Brackett series. A&AS 122:285–292. doi:10.1051/aas:1997134

    Article  ADS  Google Scholar 

  • Lewis M (1961) Stark broadening of spectral lines by high-velocity charged particles. Phys Rev 121(2):501–505. doi:10.1103/PhysRev.121.501

    Article  ADS  Google Scholar 

  • Lewis EL (1980) Collisional relaxation of atomic excited states, line broadening and interatomic interactions. Phys Rep 58(1):1–71. doi:10.1016/0370-1573(80)90056-3

    Article  ADS  Google Scholar 

  • Lewis EL, McNamara LF, Michels HH (1971) Broadening of the sodium D lines by atomic hydrogen. An analysis in terms of the NaH molecular potentials. Phys Rev A 3(6):1939–1948. doi:10.1103/PhysRevA.3.1939

    Article  ADS  Google Scholar 

  • Lind K, Asplund M, Barklem PS (2009) Departures from LTE for neutral Li in late-type stars. A&A 503(2):541–544. doi:10.1051/0004-6361/200912221

    Article  ADS  Google Scholar 

  • Lind K, Asplund M, Barklem PS, Belyaev AK (2011) Non-LTE calculations for neutral Na in late-type stars using improved atomic data. A&A 528:103. doi:10.1051/0004-6361/201016095

    Article  ADS  Google Scholar 

  • Lind K, Bergemann M, Asplund M (2012) Non-LTE line formation of Fe in late-type stars—II. 1D spectroscopic stellar parameters. MNRAS 427(1):50–60. doi:10.1111/j.1365-2966.2012.21686.x

    Article  ADS  Google Scholar 

  • Lindegren L, Feltzing S (2013) The case for high precision in elemental abundances of stars in the era of large spectroscopic surveys. A&A 553:A94. doi:10.1051/0004-6361/201321057

    Article  ADS  Google Scholar 

  • Lindholm E (1946) Pressure broadening of spectral lines. Arkiv Mat Astron Fys 32:A:17

  • Litzèn U, Brault JW, Thorne AP (1993) Spectrum and term system of neutral nickel, Ni I. Phys Scr 47:628. doi:10.1088/0031-8949/47/5/004

    Article  ADS  Google Scholar 

  • Lortet MC, Roueff E (1969) Broadening of hydrogen lines in a neutral medium. A&A 3:462

    ADS  Google Scholar 

  • Ludwig HG, Behara NT, Steffen M, Bonifacio P (2009) Impact of granulation effects on the use of Balmer lines as temperature indicators. A&A 502(2):L1–L4. doi:10.1051/0004-6361/200911997

    Article  ADS  Google Scholar 

  • Malcheva G, Engström L, Lundberg H, Nilsson H, Hartman H, Blagoev K, Palmeri P, Quinet P (2015) Radiative lifetimes and transition probabilities in Rh I. MNRAS 450:223–228. doi:10.1093/mnras/stv375

    Article  ADS  Google Scholar 

  • Mashonkina L, Zhao G, Gehren T, Aoki W, Bergemann M, Noguchi K, Shi JR, Takada-Hidai M, Zhang HW (2008) Non-LTE line formation for heavy elements in four very metal-poor stars. A&A 478(2):529–541. doi:10.1051/0004-6361:20078060

    Article  ADS  Google Scholar 

  • Massey HSW (1949) Collisions between atoms and molecules at ordinary temperatures. Rep Prog Phys 12(1):248–269. doi:10.1088/0034-4885/12/1/311

    Article  ADS  Google Scholar 

  • Meléndez J, Ramírez I, Casagrande L, Asplund M, Gustafsson B, Yong D, Do Nascimento JD, Castro M, Bazot M (2010) The solar, exoplanet and cosmological lithium problems. Astrophys Space Sci 328:193–200. doi:10.1007/s10509-009-0187-3

    Article  ADS  Google Scholar 

  • Merle T, Thévenin F, Zatsarinny O (2015) Effective collision strengths between Mg I and electrons. A&A 577:A113. doi:10.1051/0004-6361/201525914

    Article  ADS  Google Scholar 

  • Meyer W, Rosmus P (1975) PNO-CI and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first-row and second-row diatomic hydrides. J Chem Phys 63(6):2356–2375. doi:10.1063/1.431665

    Article  ADS  Google Scholar 

  • Mó O, Riera A, Yáez M (1985) Calculation of radial couplings in the model-potential and pseudopotential approaches: the NaH quasimolecule. Phys Rev A 31(6):3977–3980. doi:10.1103/PhysRevA.31.3977

    Article  ADS  Google Scholar 

  • Monteiro TS, Dickinson AS, Lewis EL (1985) The broadening and shift of the sodium D lines due to collisions with atomic hydrogen. J Phys B: At Mol Phys 18(17):3499. doi:10.1088/0022-3700/18/17/012

    Article  ADS  Google Scholar 

  • Monteiro TS, Danby G, Cooper IL, Dickinson AS, Lewis EL (1988) Broadening of the \(\text{ Ca }^{+}\) and \(\text{ Mg }^{+}\) resonance lines by collision with atomic hydrogen. J Phys B: At Mol Phys 21:4165–4175. doi:10.1088/0953-4075/21/24/016

    Article  ADS  Google Scholar 

  • Morell O, Kallander D, Butcher HR (1992) The age of the Galaxy from thorium in G dwarfs, a re-analysis. A&A 259:543–548

    ADS  Google Scholar 

  • Mott NF (1931) On the theory of excitation by collision with heavy particles. Math Proc Camb Philos Soc 27(04):553–560. doi:10.1017/S0305004100009816

    Article  ADS  MATH  Google Scholar 

  • Mott NF, Massey HSW (1949) The theory of atomic collisions. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Nahar SN (2009) Photoionization and electron-ion recombination of Cr I. JQSRT 110:2148–2161. doi:10.1016/j.jqsrt.2009.04.015

    Article  ADS  Google Scholar 

  • Nahar SN (2015a) NORAD-Atomic-Data (Nahar-OSU-Radiative-Atomic-Data). http://www.astronomy.ohio-state.edu/~nahar/nahar_radiativeatomicdata/index.html

  • Nahar SN (2015) Photoionization of ground and excited states of Ti I. New Astron 38:16–22. doi:10.1016/j.newast.2015.01.001

    Article  ADS  Google Scholar 

  • Nave G, Johansson S (1993a) Highly-excited levels of Fe I obtained from laboratory and solar Fourier transform and grating spectra—part two—laboratory and solar identifications. A&AS 102:269

    ADS  Google Scholar 

  • Nave G, Johansson S (1993b) Highly-excited levels of Fe I obtained from laboratory and solar Fourier transform and grating spectra. 1. Energy levels. A&A 274:961

  • Nave G, Johansson S (2013) The spectrum of Fe II. ApJS 204:1. doi:10.1088/0067-0049/204/1/1

    Article  ADS  Google Scholar 

  • Nave G, Johansson S, Learner RCM, Thorne AP, Brault JW (1994) A new multiplet table for Fe I. ApJS 94:221–459. doi:10.1086/192079

    Article  ADS  Google Scholar 

  • Nikitin E (2006) Adiabatic and diabatic collision processes at low energies. Springer handbook of atomic, molecular and optical physics p 741. doi:10.1007/978-0-387-26308-3_49

  • Nikitin EE, Umanskii SI (1984) Theory of slow atomic collisions, vol 30. Springer, Berlin

    Google Scholar 

  • Nikitin EE, Zülicke L (1978) Selected topics of the theory of chemical elementary processes. Lecture notes in chemistry, vol 8. Springer, Berlin [Includes index bibliography, pp 164–170]

  • Norris JE, Yong D, Bessell MS, ChristliebN, Asplund M, Gilmore G, Wyse RFG, Beers TC, Barklem PS, Frebel A,Ryan SG (2013) The most metal-poor stars. IV. The two populationswith [Fe/H] \({<}\) -3.0. ApJ 762(1):28.doi:10.1088/0004-637X/762/1/28

  • Nussbaumer H, Storey PJ (1980) Atomic data for Fe II. A&A 89:308–313

  • Oliver P, Hibbert A (2008) Energy level classifications and Breit–Pauli oscillator strengths in neutral tin. J Phys B: At Mol Opt Phys 41(16):165,003. doi:10.1088/0953-4075/41/16/165003

  • Olson RE, Liu B (1980) Interaction energies for low-lying electronic states of NaH and \(\text{ NaH }^{-}\): scattering of \(\text{ H }^{-}\) by alkali atoms. J Chem Phys 73(6):2817–2824. doi:10.1063/1.440451

    Article  ADS  Google Scholar 

  • Olson RE, Smith FT, Bauer E (1971) Estimation of the coupling matrix elements for one-electron transfer systems. App Opt 10(8):1848–1855. doi:10.1364/AO.10.001848

    Article  ADS  Google Scholar 

  • O’Mara BJ (1976) Comments on the broadening of spectral lines by collisions with atomic hydrogen. MNRAS 177:551–568

    Article  ADS  Google Scholar 

  • O’Mara BJ, Gietzel PC (1978) The use of multipole expansions in spectral line-broadening theory. MNRAS 184:205–210

    Article  ADS  Google Scholar 

  • O’Neill JA, Smith G (1980) Collisional broadening of spectral lines in laboratory and solar spectra. I-The 6162, 6122, 6102 a multiplet of neutral calcium. II–Low excitation lines of neutral iron. A&A 81:100–112

    ADS  Google Scholar 

  • Osorio Y, Barklem PS (2016) Mg line formation in late-type stellar atmospheres. II. Calculations in a grid of 1D models. A&A 586:A120. doi:10.1051/0004-6361/201526958

  • Osorio Y, Barklem PS, Lind K, Asplund M (2011) The influence of electron collisions on non-LTE Li line formation in stellar atmospheres. A&A 529:31. doi:10.1051/0004-6361/201016418

    Article  ADS  Google Scholar 

  • Osorio Y, Barklem PS, Lind K, Belyaev AK, Spielfiedel A, Guitou M, Feautrier N (2015) Mg line formation in late-type stellar atmospheres. I. The model atom. A&A 579:A53. doi:10.1051/0004-6361/201525846

    Article  ADS  Google Scholar 

  • Partridge H, Langhoff SR (1981) Theoretical treatment of the X 1\(\varSigma \)+, A 1\(\varSigma \)+, and B 1\(\varPi \) states of LiH. J Chem Phys 74(4):2361–2371. doi:10.1063/1.441355

    Article  ADS  Google Scholar 

  • Peach G (1981) Theory of the pressure broadening and shift of spectral lines. Adv Phys 30(3):367–474. doi:10.1080/00018738100101467

    Article  ADS  Google Scholar 

  • Peach G (2006) Collisional broadening of spectral lines. Springer handbook of atomic, molecular and optical physics, p 875. doi:10.1007/978-0-387-26308-3_59

  • Peach G (2011) Recent results for widths of lines important in the spectra of cool stars. Balt Astron 20:516–522

    ADS  Google Scholar 

  • Peart B, Hayton DA (1994) Merged beam measurements of the mutual neutralization of \(\text{ He }^{+}/\text{ H }^{-}\) and \(\text{ Li }^{+}/\text{ D }^{-}\) ions. J Phys B: At Mol Opt Phys 27(12):2551–2556. doi:10.1088/0953-4075/27/12/013

    Article  ADS  Google Scholar 

  • Pereira TMD, Asplund M, Kiselman D (2009) Oxygen lines in solar granulation II. Centre-to-limb variation, NLTE line formation, blends, and the solar oxygen abundance. A&A 508(3):1403–1416. doi:10.1051/0004-6361/200912840

  • Pereira TMD, Asplund M, Collet R, Thaler I, Trampedach R, Leenaarts J (2013) How realistic are solar model atmospheres? A&A 554:A118. doi:10.1051/0004-6361/201321227

    Article  ADS  Google Scholar 

  • Peterson RC, Kurucz RL (2015) New Fe I level energies and line identifications from stellar spectra. ApJS 216:1. doi:10.1088/0067-0049/216/1/1

    Article  ADS  Google Scholar 

  • Pickering JC (1996) Measurements of the hyperfine structure of atomic energy levels in Co I. ApJS 107:811. doi:10.1086/192382

    Article  ADS  Google Scholar 

  • Piskunov NE, Kupka F, Ryabchikova TA, Weiss WW, Jeffery CS (1995) VALD: the Vienna atomic line data base. A&AS 112:525

    ADS  Google Scholar 

  • Plaskett HH (1955) Interpretation of Fraunhofer-line profiles. MNRAS 115:256

    Article  ADS  Google Scholar 

  • Plummer M, Noble CJ, Dourneuf ML (2004) Low-energy behaviour of e-O scattering calculations. J Phys B: At Mol Opt Phys 37(14):2979–2996. doi:10.1088/0953-4075/37/14/011

    Article  ADS  Google Scholar 

  • Pradhan AK, Nahar SN (2011) Atomic astrophysics and spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Prats F, Fano U (1964) Metastable levels in the continuum and the independent particle model. In: McDowell MRC (ed) Atomic collision processes: proceedings of the third international conference on the physics of electronic and atomic collisions. North-Holland Publishing Company, Amsterdam, p 600

    Google Scholar 

  • Ramsbottom CA, Scott MP, Bell KL, Keenan FP, McLaughlin BM, Sunderland AG, Burke VM, Noble CJ, Burke PG (2002) Electron impact excitation of the iron peak element Fe II. J Phys B: At Mol Opt Phys 35(16):3451–3477. doi:10.1088/0953-4075/35/16/308

    Article  ADS  Google Scholar 

  • Ramsbottom CA, Noble CJ, Burke VM, Scott MP, Burke PG (2007) Electron-impact excitation of Fe II. J Phys Conf Ser 58:283–286. doi:10.1088/1742-6596/58/1/062

    Article  ADS  Google Scholar 

  • Reader J, Kramida A, Ralchenko Y (2012) NIST atomic spectroscopy databases in support of astronomy. In: American astronomical society meeting abstracts, vol 219

  • Roueff E (1974) Broadening of the sodium D lines by atomic hydrogen. An analysis in terms of the S matrix. J Phys B: At. Mol Phys 7(2):185–198. doi:10.1088/0022-3700/7/2/004

    Article  Google Scholar 

  • Roueff E, van Regemorter H (1971) The Broadening by neutral hydrogen in the solar atmosphere. A&A 12:317

    ADS  Google Scholar 

  • Ruffoni MP, Allende Prieto C, Nave G, Pickering JC (2013) Infrared laboratory oscillator strengths of Fe I in the H-band. ApJ 779:17. doi:10.1088/0004-637X/779/1/17

    Article  ADS  Google Scholar 

  • Ryabchikova T, Piskunov N, Kurucz RL, Stempels HC, Heiter U, Pakhomov Y, Barklem PS (2015) A major upgrade of the VALD database. Phys Scr 90(054):005. doi:10.1088/0031-8949/90/5/054005

    Google Scholar 

  • Ryde N, Lambert J, Farzone M, Richter MJ, Josselin E, Harper GM, Eriksson K, Greathouse TK (2015) Systematic trend of water vapour absorption in red giant atmospheres revealed by high resolution TEXES 12 \(\mu \)m spectra. A&A 573:A28. doi:10.1051/0004-6361/201424851

    Article  ADS  Google Scholar 

  • Sachs ES, Hinze J, Sabelli NH (1975) MCSCF calculations for six states of NaH. J Chem Phys 62(9):3367–3376. doi:10.1063/1.430989

    Article  ADS  Google Scholar 

  • Sahal-Brechot S (1969a) Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma. A&A 1:91

    ADS  Google Scholar 

  • Sahal-Brechot S (1969b) Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma (continued). A&A 2:322

    ADS  Google Scholar 

  • Sahal-Bréchot S, Bommier V (2014) Collisional line broadening versus collisional depolarization: similarities and differences. Adv Space Res 54(7):1164–1172. doi:10.1016/j.asr.2013.10.016

    Article  ADS  Google Scholar 

  • Sahal-Bréchot S, Derouich M, Bommier V, Barklem PS (2007) Multipole rates for atomic polarization studies: the case of complex atoms in non-spherically symmetric states colliding with atomic hydrogen. A&A 465(2):667–677. doi:10.1051/0004-6361:20066653

    Article  ADS  Google Scholar 

  • Sahal-Bréchot S, Dimitrijević MS, Nessib NB (2014) Widths and shifts of isolated lines of neutral and ionized atoms perturbed by collisions with electrons and ions: an outline of the semiclassical perturbation (SCP) method and of the approximations used for the calculations. Atoms 2(2):225–252. doi:10.3390/atoms2020225

    Article  ADS  Google Scholar 

  • Sahal-Bréchot S, Dimitrijević MS, Moreau N, Ben Nessib N (2015) The STARK-B database VAMDC node: a repository for spectral line broadening and shifts due to collisions with charged particles. Phys Scr 90(054):008. doi:10.1088/0031-8949/90/5/054008

    Google Scholar 

  • Sanchez-Fortún Stoker J, Dickinson AS (2003) Line mixing in H broadening of the Na 3P–3D lines. J Phys B: At Mol Opt Phys 36(7):1309–1318. doi:10.1088/0953-4075/36/7/303

    Article  ADS  Google Scholar 

  • Sauval AJ, Tatum JB (1984) A set of partition functions and equilibrium constants for 300 diatomic molecules of astrophysical interest. ApJS 56:193–209. doi:10.1086/190980

    Article  ADS  Google Scholar 

  • Schwartz C (1961) Electron scattering from hydrogen. Phys Rev 124(5):1468–1471. doi:10.1103/PhysRev.124.1468

    Article  ADS  Google Scholar 

  • Schweinzer J, Brandenburg R, Bray I, Hoekstra R, Aumayr F, Janev RK, Winter HP (1999) Database for inelastic collisions of lithium atoms with electrons protons, and multiply charged ions. At Data Nucl Data Tables 72:239. doi:10.1006/adnd.1999.0815

    Article  ADS  Google Scholar 

  • Schweitzer A, Hauschildt PH, Baron E (2000) Non-LTE treatment of molecules in the photospheres of cool stars. ApJ 541:1004–1015. doi:10.1086/309461

    Article  ADS  Google Scholar 

  • Seaton MJ (1962a) The impact parameter method for electron excitation of optically allowed atomic transitions. Proc Phys Soc 79:1105–1117. doi:10.1088/0370-1328/79/6/304

    Article  ADS  Google Scholar 

  • Seaton MJ (1962b) The theory of excitation and ionization by electron impact. In: Bates DR (ed) Atomic and molecular processes. Academic Press, New York, p 375

    Google Scholar 

  • Shore BW (1967a) Analysis of absorption profiles of autoionizing lines. J Opt Soc Am 57(7):881. doi:10.1364/JOSA.57.000881

    Article  ADS  Google Scholar 

  • Shore BW (1967b) Scattering theory of absorption-line profiles and refractivity. Rev Mod Phys 39(2):439–462. doi:10.1103/RevModPhys.39.439

    Article  ADS  Google Scholar 

  • Smith G, Drake JJ (1988) Collisional broadening of the calcium infrared triplet lines by atomic hydrogen. MNRAS 231:115–123

    Article  ADS  Google Scholar 

  • Smith EW, Cooper J, Vidal CR (1969) Unified classical-path treatment of stark broadening in plasmas. Phys Rev 185(1):140–151. doi:10.1103/PhysRev.185.140

    Article  ADS  Google Scholar 

  • Smith EW, Cooper J, Vidal CR (1972) Comments on the validity of the unified classical path theory of Stark broadening. J Phys B: At Mol Phys 5(2):L33–L35. doi:10.1088/0022-3700/5/2/006

    Article  ADS  Google Scholar 

  • Smith EW, Cooper J, Roszman LJ (1973) An analysis of the unified and scalar additivity theories of spectral line broadening. JQSRT 13(12):1523–1538. doi:10.1016/0022-4073(73)90057-5

    Article  ADS  Google Scholar 

  • Smith G, Monteiro TS, Dickinson AS, Lewis EL (1985) Collisional broadening of the sodium D lines by atomic hydrogen. MNRAS 217:679–684

    Article  ADS  Google Scholar 

  • Smith G, Edvardsson B, Frisk U (1986) Non-resonance lines of neutral calcium in the spectra of the Alpha Centauri binary system. A&A 165:126–134

    ADS  Google Scholar 

  • Smitha HN, Nagendra KN, Stenflo JO, Bianda M, Ramelli R (2014) The quantum interference effects in the Sc II 4247 Å line of the second solar spectrum. ApJ 794(1):30. doi:10.1088/0004-637X/794/1/30

    Article  ADS  Google Scholar 

  • Sneden C (1973) The nitrogen abundance of the very metal-poor star HD 122563. ApJ 184:839–849. doi:10.1086/152374

    Article  ADS  Google Scholar 

  • Sneden C, Bean J, Ivans I, Lucatello S, Sobeck J (2012) MOOG: LTE line analysis and spectrum synthesis. Astrophysics Source Code Library, ascl:1202009

  • Sneden C, Lawler JE, Wood MP, Hartog EAD, Cowan JJ (2014) Atomic data for stellar spectroscopy: recent successes and remaining needs. Phys Scr 89(11):114006. doi:10.1088/0031-8949/89/11/114006

    Article  ADS  Google Scholar 

  • Spielfiedel A (2003) Ab initio calculation of electronic transition moments for singlet excited states of the \(\text{ H }_{2}\) molecule. J Mol Spec 217(2):162–172. doi:10.1016/S0022-2852(02)00043-7

    Article  ADS  Google Scholar 

  • Spielfiedel A, Feautrier N, Chambaud G, Levy B (1991) Collision broadening of the 4s4p(3Po)-4s5s(3S) line of calcium perturbed by hydrogen and collision induced transitions among the 4s4p(3Po) states. J Phys B: At Mol Opt Phys 24(22):4711. doi:10.1088/0953-4075/24/22/010

    Article  ADS  Google Scholar 

  • Spite M, Cayrel R, Plez B, Hill V, Spite F, Depagne E, François P, Bonifacio P, Barbuy B, Beers T, Andersen J, Molaro P, Nordström B, Primas F (2005) First stars VI—abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements. A&A 430:655–668. doi:10.1051/0004-6361:20041274

    Article  ADS  Google Scholar 

  • Steenbock W, Holweger H (1984) Statistical equilibrium of lithium in cool stars of different metallicity. A&A 130:319–323

    ADS  Google Scholar 

  • Steffen M, Prakapavičius D, Caffau E, Ludwig HG, Bonifacio P, Cayrel R, Kučinskas A, Livingston WC (2015) The photospheric solar oxygen project. IV. 3D-NLTE investigation of the 777 nm triplet lines. A&A 583:A57. doi:10.1051/0004-6361/201526406

  • Stehle C (1994) Stark broadening of hydrogen Lyman and Balmer in the conditions of stellar envelopes. A&AS 104:509–527

    ADS  Google Scholar 

  • Stehle C, Fouquet S (2010) Hydrogen stark broadened Brackett lines. Int J Spec 2:1–6. doi:10.1103/PhysRevA.51.1918

    Article  Google Scholar 

  • Stehle C, Hutcheon R (1999) Extensive tabulations of Stark broadened hydrogen line profiles. A&AS 140:93–97. doi:10.1051/aas:1999118

    Article  ADS  Google Scholar 

  • Stenflo JO, Keller CU (1997) The second solar spectrum. A new window for diagnostics of the Sun. A&A 321:927–934

    ADS  Google Scholar 

  • Strömgren B (1956) Two-dimensional spectral classification of F stars through photoelectric photometry with interference filters. Vistas Astron 2:1336–1346. doi:10.1016/0083-6656(56)90060-5

    Article  ADS  Google Scholar 

  • Struve O (1929) The stark effect in stellar spectra. ApJ 69:173. doi:10.1086/143174

    Article  ADS  Google Scholar 

  • The Opacity Project Team (1995) The opacity project, Bristol, UK. Institute of Physics Pub, Philadelphia, 1995–1996

  • Thevenin F (1989) Oscillator strengths from the solar spectrum. A&AS 77:137–154

    ADS  Google Scholar 

  • Thevenin F (1990) Oscillator strengths from the solar spectrum. II. A&AS 82:179–188

    ADS  Google Scholar 

  • Thomas RD, Schmidt HT, Gurell J, Haag N, Holm AIS, Johansson HAB, Källersjö G, Larsson M, Mannervik S, Misra D, Orban A, Reinhed P, Rensfelt KG, Rosén S, Seitz F, Weimer J, Zettergren H, Andler G, Danared H, Das S, Liljeby L, Björkhage M, Blom M, Brännholm L, Halldén P, Hellberg F, Källberg A, Leontein S, Löfgren P, Malm B, Paál A, Simonsson A, Cederquist H (2011) DESIREE: a unique cryogenic electrostatic storage ring for merged ion-beams studies. J Phys: Conf Ser 300(012):011. doi:10.1088/1742-6596/300/1/012011

    Google Scholar 

  • Thompson RI (1973) Conditions for carbon monoxide vibration–rotation LTE in late stars. ApJ 181:1039–1054. doi:10.1086/152110

    Article  ADS  Google Scholar 

  • Tucci Maia M, Meléndez J, Ramírez I (2014) High precision abundances in the 16 Cyg binary system: a signature of the rocky core in the giant planet. ApJL 790:L25. doi:10.1088/2041-8205/790/2/L25

    Article  Google Scholar 

  • Umeda H, Nomoto K (2002) Nucleosynthesis of zinc and iron peak elements in population III type II supernovae: comparison with abundances of very metal poor halo stars. ApJ 565:385–404. doi:10.1086/323946

  • Unsöld A (1955) Physik der Sternatmospharen, mit besonderer Berucksichtigung der Sonne. Springer, Berlin

    MATH  Google Scholar 

  • van Regemorter H (1962) Rate of collisional excitation in stellar atmospheres. ApJ 136:906. doi:10.1086/147445

    Article  ADS  Google Scholar 

  • van Rensbergen W, de Doncker E, Deridder G (1975) On the broadening and shift of spectral lines. Sol Phys 40:303–315. doi:10.1007/BF00162377

    Article  ADS  Google Scholar 

  • Vidal CR, Cooper J, Smith EW (1970) Hydrogen Stark broadening calculations with the unified classical path theory. JQSRT 10:1011–1063. doi:10.1016/0022-4073(70)90121-4

    Article  ADS  Google Scholar 

  • Vidal CR, Cooper J, Smith EW (1971) Unified theory calculations of Stark broadened hydrogen lines including lower state interactions. JQSRT 11:263–281. doi:10.1016/0022-4073(71)90013-6

    Article  ADS  Google Scholar 

  • Vidal CR, Cooper J, Smith EW (1973) Hydrogen Stark-broadening tables. ApJS 25:37. doi:10.1086/190264

    Article  ADS  Google Scholar 

  • Walton NA, Dubernet ML, Mason NJ, Piskunov N, Rixon GT, Vamdc Consortium (2011) VAMDC: the virtual atomic and molecular data center. In: ASP conference proceedings, astronomical society of the Pacific, San Francisco, vol 442, p 89

  • Warner B (1968) Atomic oscillator strengths-I. Neutral silicon. MNRAS 139:1

    Article  ADS  Google Scholar 

  • Wiedemann G, Ayres TR, Jennings DE, Saar SH (1994) Carbon monoxide fundamental bands in late-type stars. III. Chromosphere or CO-mosphere? ApJ 423:806. doi:10.1086/173859

  • Wood MP, Lawler JE, Sneden C, Cowan JJ (2013) Improved Ti II Log(gf) Values and abundance determinations in the photospheres of the Sun and metal-poor star HD 84937. ApJS 208:27. doi:10.1088/0067-0049/208/2/27

    Article  ADS  Google Scholar 

  • Wood MP, Lawler JE, Den Hartog EA, Sneden C, Cowan JJ (2014) Improved V II Log(gf) values, hyperfine structure constants, and abundance determinations in the photospheres of the Sun and metal-poor star HD 84937. ApJS 214:18. doi:10.1088/0067-0049/214/2/18

    Article  ADS  Google Scholar 

  • Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. ApJS 101:181. doi:10.1086/192237

    Article  ADS  Google Scholar 

  • Yu-Ran L (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton

    Google Scholar 

  • Zatsarinny O (2006) BSR: B-spline atomic R-matrix codes. Comput Phys Commun 174(4):273–356. doi:10.1016/j.cpc.2005.10.006

    Article  ADS  MATH  Google Scholar 

  • Zatsarinny O, Bartschat K (2005a) Benchmark calculations for electron collisions with \(\text{ Fe }^{+}\). Phys Rev A 72(2):020702. doi:10.1103/PhysRevA.72.020702

    Article  ADS  Google Scholar 

  • Zatsarinny O, Bartschat K (2005b) Benchmark calculations for electron collisions with zinc atoms. Phys Rev A 71(2):022716. doi:10.1103/PhysRevA.71.022716

    Article  ADS  Google Scholar 

  • Zatsarinny O, Bartschat K (2010) Electron collisions with copper atoms: elastic scattering and electron-impact excitation of the (3d10 4s) 2S - (3d10 4p) 2P resonance transition. Phys Rev A 82(6):062703. doi:10.1103/PhysRevA.82.062703

    Article  ADS  Google Scholar 

  • Zatsarinny O, Bartschat K (2013) The B-spline R-matrix method for atomic processes: application to atomic structure, electron collisions and photoionization. J Phys B: At Mol Opt Phys 46(11):112001. doi:10.1088/0953-4075/46/11/112001

    Article  ADS  Google Scholar 

  • Zatsarinny O, Bartschat K, Gedeon S, Gedeon V, Lazur V, Nagy E (2009) Cross sections for electron scattering from magnesium. Phys Rev A 79(5):052709. doi:10.1103/PhysRevA.79.052709

    Article  ADS  Google Scholar 

  • Zatsarinny O, Bartschat K, Suvorov V, Teubner PJO, Brunger MJ (2010) Electron-impact excitation of the (3d10 4s) \({2\text{ S }}_{1/2}\) - (3d9 4s2) \({2\text{ D }}_{5/2,3/2}\) transitions in copper atoms. Phys Rev A 81(6):062705. doi:10.1103/PhysRevA.81.062705

    Article  ADS  Google Scholar 

  • Zener C (1932) Non-adiabatic crossing of energy levels. Proc R Soc London Ser A Math Phys Sci 137(833):696–702

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This review owes particularly large debts to two great scientists, Jim O’Mara and Andrey Belyaev. I have benefitted immeasurably from having long-term scientific collaborations with them. They have taught me not only physics and astrophysics, but been models of how to do science honestly and ethically. I have learnt from them the value of analytic understanding, often with Jim on the “back-of the-envelope”. They showed me by example how to work carefully on hard problems on long timescales. I am grateful to them both. I thank the many other collaborators who have contributed to work presented here. In particular, I wish to thank Stuart Anstee, Jenny Aspelund-Johansson, Juan Manuel Borrero, Remo Collet, Moncef Derouich, Alan Dickinson, Laine Falklund, Nicole Feautrier, Xavier Gadéa, Marie Guitou, Yeisson Osorio, Sylvie Sahal-Bréchot, and Annie Spielfiedel, for collaboration on various problems in atomic physics over the years. I thank also my many colleagues at Uppsala, past and present, for providing a stimulating and pleasant environment to work in. I thank Igor Bray for clarifications regarding the CCC method. This review and much of the work in it would not have been possible without financial support from the Royal Swedish Academy of Sciences, the Wenner-Gren Foundation, Goran Gustafssons Stiftelse and the Swedish Research Council. For much of this work I was a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. I am presently partially supported by the project grant “The New Milky Way” from the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Barklem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barklem, P.S. Accurate abundance analysis of late-type stars: advances in atomic physics. Astron Astrophys Rev 24, 9 (2016). https://doi.org/10.1007/s00159-016-0095-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-016-0095-9

Keywords

Navigation