Skip to main content
Log in

Habitability: from stars to cells

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

To determine where to search for life in our solar system or in other extrasolar systems, the concept of habitability has been developed, based on the only sample we have of a biological planet—the Earth. Habitability can be defined as the set of the necessary conditions for an active life to exist, even if it does not exist. In astronomy, a habitable zone (HZ) is the zone defined around a sun/star, where the temperature conditions allow liquid water to exist on its surface. This habitability concept can be considered from different scientific perspectives and on different spatial and time scales. Characterizing habitability at these various scales requires interdisciplinary research. In this article, we have chosen to develop the geophysical, geological, and biological aspects and to insist on the need to integrate them, with a particular focus on our neighboring planets, Mars and Venus. Important geodynamic processes may affect the habitability conditions of a planet. The dynamic processes, e.g., internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution, meteorite impacts, and erosion, modify the planetary surface, the possibility to have liquid water, the thermal state, the energy budget, and the availability of nutrients. They thus play a role in the persistence of life on a planet. Earth had a liquid water ocean and some continental crust in the Hadean between 4.4 and 4.0 Ga (Ga: billions years ago), and may have been habitable very early on. The origin of life is not understood yet; but the oldest putative traces of life are early Archean (~3.5 Ga). Studies of early Earth habitats documented in the rock record hosting fossil life traces provide information about possible habitats suitable for life beyond Earth. The extreme values of environmental conditions in which life thrives today can also be used to characterize the “envelope” of the existence of life and the range of potential extraterrestrial habitats. The requirement of nutrients by life for biosynthesis of cellular constituents and for growth, reproduction, transport, and motility may suggest that a dynamic and rocky planet with hydrothermal activity and formation of relief, liquid water alteration, erosion, and runoff is required to replenish nutrients and to sustain life (as we know it). The concept of habitability is very Earth-centric, as we have only one biological planet to study. However, life elsewhere would most probably be based on organic chemistry and leave traces of its past or recent presence and metabolism by modifying microscopically or macroscopically the physico-chemical characteristics of its environment. The extent to which these modifications occur will determine our ability to detect them in astrobiological exploration. Looking at major steps in the evolution of life may help determining the probability of detecting life (as we know it) beyond Earth and the technology needed to detect its traces, be they morphological, chemical, isotopic, or spectral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Anderson KA, Carlson CW, McFadden JM, Curtis DW, Mitchell D, Rème H, Mazelle C, Savaud JA, d’Uston C, Cros A, Medale JL, Bauer SJ, Cloutier P, Mayhew M, Winterhalter D, Ness NF (1998) Magnetic field and plasma observations at mars: initial results of the mars global surveyor mission. Science 279: 1676–1680

    ADS  Google Scholar 

  • Acuña MH, Connerney JEP, Wasilewski P, Lin RP, Mitchell D, Anderson KA, Carlson CW, McFadden JM, Rème H, Mazelle C, Vignes D, Bauer SJ, Cloutier P, Ness NF (2001) Magnetic field of mars: summary of results from the aerobraking and mapping orbits. J Geophys Res 106(E10): 23403–23417

    ADS  Google Scholar 

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the early Archaean era of Australia. Nature 441: 714–718

    ADS  Google Scholar 

  • Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Coleman ML, Kanik (2008) Controls on development and diversity of early Archean stromatolites. PNAS 16: 9548–9555

    Google Scholar 

  • Anbar A, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge?. Science 297: 1137–1142. doi:10.1126/science.1069651

    ADS  Google Scholar 

  • Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the great oxidation event?. Science 317: 1903–1906

    ADS  Google Scholar 

  • Arnold L (2008) Earthshine observation of vegetation and implication for life detection on other planets. Space Sci Rev. doi:10.1007/s11214-007-9281-4

  • Bada JL (2004) How life began on Earth: a status report. Earth Planet Sci Lett 226: 1–15

    ADS  Google Scholar 

  • Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4: 137–167

    ADS  Google Scholar 

  • Barabash S (2009) Venus, earth, mars: comparative ion escape rates. Invited talk at international conference on comparative planetology: venus-earth-mars, ESLAB 2009, ESTEC, The Netherlands

  • Barabash S, Fedorov A, Lundin R, Sauvaud JA (2007) Martian atmospheric erosion rates. Science 315: 501. doi:10.1126/science.1134358

    ADS  Google Scholar 

  • Barron (2008) Chirality and life. In: Botta O, Bada JL, Gomez-Elvira J, Javaux E, Selsis F, Summons R (eds) Strategies of life detection. Space Sci ISSI 25:187–201

  • Beaulieu JP et al (2006) Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439: 437–440

    ADS  Google Scholar 

  • Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427: 117–120

    ADS  Google Scholar 

  • Bekker A, Kaufman AJ, Karhu JA, Eriksson KA (2005) Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Res 137: 167–206

    Google Scholar 

  • Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe?. Current Opinion Chem Biol 8: 672–689

    Google Scholar 

  • Bertrand P (2007) Towards a global Earth’s regulation. In: Gargaud M, Martin H, Clayes Ph (eds) Lectures in astrobiology II. Springer, Berlin, Heidelberg. pp 281–302. doi:10.1007/10913314.

  • Bibring JP, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthé M, Soufflot A, Arvidson RE, Mangold N, Mustard J, Drossart P (2005) Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307(5715): 1576–1581

    ADS  Google Scholar 

  • Bibring JP, Langevin Y, Mustard JF, Poulet F, Arvidson RE, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312: 400–404

    ADS  Google Scholar 

  • Boss AP (2006) Rapid formation of super-Earths around M dwarf stars. Astrophys J 644: 79–82

    ADS  Google Scholar 

  • Botta O, Bada JL, Gomez-Elvira J, Javaux E, Selsis F, Summons R (eds) (2008) Strategies of life detection. Space Sci ISSI 25:388. Reprinted from Space Sci Rev J 135:1–4

  • Boynton WV, Ming DW, Kounaves SP, Young SMM, Arvidson RE, Hecht MH, Hoffman J, Niles PB, Hamara DK, Quinn RC, Smith PH, Sutter B, Catling DC, Morris RV (2009) Evidence for calcium carbonate at the mars phoenix landing site. Science 325: 61–64

    ADS  Google Scholar 

  • Brasier MD, McLoughin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Phil Trans R Soc B 361: 887–902

    Google Scholar 

  • Breslow R, Cheng ZL (2009) On the origin of terrestrial homochirality for nucleosides and amino acids. PNAS 106: 9144–9146

    ADS  Google Scholar 

  • Breuer D, Spohn T (2003) Early plate tectonics versus single-plate tectonics on Mars: evidence from magnetic field history and crust evolution. J Geophys Res 108: 5072. doi:10.1029/2002JE001999

    Google Scholar 

  • Breuer D, Spohn T (2006) Viscosity of the Martian mantle and its initial temperature: constraints from crust formation history and the evolution of the magnetic field. Planet Space Sci 54: 153–169. doi:10.1016/j.pss.2005.08.008

    ADS  Google Scholar 

  • Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78-2.45 billion year old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67: 4321–4335

    ADS  Google Scholar 

  • Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437: 866–870

    ADS  Google Scholar 

  • Buick R (2001) Paleobiology II. In: Briggs DEG, Crowther PR (eds) Blackwell Science. Oxford Press, London, pp 13–21

    Google Scholar 

  • Buick R (2008) When did oxygenic photosynthesis evolve? Phil Trans R Soc B 13. doi:10.1098/rstb.2008.0041

  • Bullock MA, Grinspoon DH (1996) The stability of climate on Venus. J Geophys Res 101(E3): 7521–7530. doi:10.1029/95JE03862

    ADS  Google Scholar 

  • Canfield D, Habicht KS, Thamdrup B (2000) The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288: 658–661

    ADS  Google Scholar 

  • Catling DC (2007) Ancient fingerprints in the clay. Nature 448: 31–32

    ADS  Google Scholar 

  • Chevrier V, Poulet F, Bibring J-P (2007) Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448: 60–63

    ADS  Google Scholar 

  • Christensen UR, Aubert J (2006) Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields, Geophys. J Int 166(1): 97–114. doi:10.1111/j.1365-246X.2006.03009.x

    Google Scholar 

  • Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosphere 38: 105–115

    ADS  Google Scholar 

  • Cockell CS et al (2009) Darwin-A mission to detect and search for life on extrasolar planets. Astrobiology 9: 1–22

    ADS  Google Scholar 

  • Connerney JEP, Acuña MH, Ness NF, Spohn T, Schubert G (2004) Mars crustal magnetism. Space Sci Rev 111(1–2): 1–32. doi:10.1023/B:SPAC.0000032719.40094.1d

    ADS  Google Scholar 

  • Corrigan CM, Harvey RP (2004) Multi-generational carbonate assemblages in Martian meteorite Allan Hills 84001: implications for nucleation, growth and alteration. Meteorit Planet Sci 39: 17–30

    ADS  Google Scholar 

  • Dehant V, Lammer H, Kulikov Y, Griemeier JM, Breuer D, Verhoeven O, Karatekin Ö, Van Hoolst T, Korablev O, Lognonné P (2007) Planetary magnetic dynamo effect on atmospheric protection of early earth and mars. In: Fishbaugh K et al (eds) Geology and habitability of terrestrial planets. Space sci Ser ISSI 24. Reprinted from Space Sci Rev, Springer, Dordrecht, The Netherlands. Space Sci Rev 129(1–3):279–300. doi:10.1007/s11214-007-9163-9.

  • Dole SH (1964) Habitable planets for man. NewYork, Blaisdell, 159 pp

  • Ehlmann BL, Mustard JF, Murchie SL, Poulet F, Bishop JL, Brown AJ, Calvin WM, Clark RN, Des Marais DJ, Milliken RE, Roach LH, Roush TL, Swayze GA, Wray JJ (2008) Orbital identification of carbonate-bearing rocks on Mars. Science 322: 1828–1832. doi:10.1126/science.1164759

    ADS  Google Scholar 

  • Falkowski PG, Godfrey LV (2008a) Electrons, life and the evolution of Earth’s oxygen cycle. Phil Trans R Soc B 12. doi:10.1098/rstb.2008.0054; published online

  • Falkowski PG, Fenchel T, Delong EF (2008b) The microbial engines that drive Earth’s biogeochemical cycles. Science 320: 1034–1038

    ADS  Google Scholar 

  • Fassett CI, Head JW (2005) Valleys on hecates tholus, mars: origin by basal melting of summit snowpack. Planet Space Sci 54(4): 370–378. doi:10.1016/j.pss.2005.12.011

    ADS  Google Scholar 

  • Fassett CI, Head JW (2007) Valley formation on martian volcanoes in the Hesperian: evidence for melting of summit snowpack, caldera lake formation, drainage and erosion on ceraunius tholus. Icarus 189(1): 118–135. doi:10.1016/j.icarus.2006.12.021

    ADS  Google Scholar 

  • Fernandez-Remolar DC, Knoll AH (2008) Fossilization potential of iron-bearing minerals in acidic environments of Rio Tinto, Spain: implications for Mars exploration. Icarus 194: 72–85. doi:10.1016/j.icarus.2007.10.009

    ADS  Google Scholar 

  • Franck S, Block A, von Bloh W, Bounama C, Garrido I, Schellnhuber H-J, Svirezhev Y (2000) Habitable zone for Earth-like planets in the solar system. Planet Space Sci 48(11): 1099–1105

    ADS  Google Scholar 

  • Franck S, Block A, von Bloh W, Bounama C, Garrido I, Schellnhuber H-J (2001) Planetary habitability: is Earth commonplace in the milky way?. Naturwiss 88: 416–426

    ADS  Google Scholar 

  • Furnes H, Staudigel H (1999) Biological mediation in ocean crust alteration: how deep is the deep biosphere?. Earth Planet Sci Lett 166: 97–103. doi:10.1016/S0012-821X(99)00005-9

    ADS  Google Scholar 

  • Gaidos E, Selsis F (2007) From protoplanets to protolife: the emergence and maintenance of life. Proceedings of protostars and planets V, Waikoloa, The Big Island, Hawaii, 24–28 Oct 2005. E-Print: astro-ph/0602008

  • Gillmann C, Lognonné P, Chassefière E (2006) Evolution of the atmospheres of terrestrial planets: focus on Mars and Venus. American geophysical union, fall meeting 2006. Abstract P23A-0035

  • Gillmann C, Lognonné P, Chassefière E, Moreira M (2009) The present-day atmosphere of Mars: where does it come from?. Earth Planet Sci Lett 277(3-4): 384–393. doi:10.1016/j.epsl.2008.10.033

    ADS  Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435: 466–469

    ADS  Google Scholar 

  • Grady MM, Verchovsky AB, Wright IP (2004) Magmatic carbon in Martian meteorites: attempts to constrain the carbon cycle on Mars. Int J Astrobiol 3: 117–124

    Google Scholar 

  • Griessmeier J-M, Stadelmann A, Motschmann U, Belisheva NK, Lammer H, Biernat HK (2005) Cosmic ray impact on extrasolar Earth-like planets in close-in habitable zones. Astrobiology 5(5): 587–603. doi:10.1089/ast.2005.5.587

    ADS  Google Scholar 

  • Guillermo G (2005) Habitable zones in the universe. Orig Life Evol Biospher 35: 555–606. doi:10.1007/s11084-005-5010-8

    ADS  Google Scholar 

  • Guillermo G, Brownlee D, Ward P (2001) The galactic habitable zone: galactic chemical evolution. Icarus 152(1): 185–200. doi:10.1006/icar.2001.6617

    ADS  Google Scholar 

  • Hart MH (1979) Habitable zones about main sequence stars. Icarus 37: 351–357

    ADS  Google Scholar 

  • Hartmann WK (1975) Lunar ’cataclysm’-A misconception. Icarus 24: 181–187

    ADS  Google Scholar 

  • Hashizume K, Sugihara A, Pinti DL, Orberger B, Westall F (2006) Search for primordial biogenic isotopic signatures of nitrogen in Archean sedimentary rocks. Geochim Cosmochim Acta Suppl 70: 235

    ADS  Google Scholar 

  • Holk GJ, Taylor BE, Galley AG (2008) Oxygen isotope mapping of the Archean Sturgeon Lake caldera complex and VMS-related hydrothermal system, Northwestern Ontario, Canada. Mineral Deposita 43(6): 623–640. doi:10.1007/s00126-008-0185-3

    ADS  Google Scholar 

  • Huang SS (1959) Ocurrence of life in the universe. Am Sci 47: 397–402

    Google Scholar 

  • Huang SS (1960) Life outside the solar system. Sci Am 202: 55–63

    Google Scholar 

  • Jackson B, Barnes R, Greensberg R (2008) Tidal heating of terrestrial extrasolar planets and implications for their habitability. Month Notice R Astronom Soc 391(1): 237–245. doi:10.1111/j.1365-2966.2008.13868.x

    ADS  Google Scholar 

  • Jackson B, Greensberg R, Barnes R (2009) The effects of tides on close-in exoplanets. American astronomical society, AAS meeting, 213, 351.01. Bull Am Astron Soc 41:491

    Google Scholar 

  • Jakosky BM, Phillips RJ (2001) Review article Mars’ volatile and climate history. Nature 412: 237–244. doi:10.1038/35084184

    ADS  Google Scholar 

  • Jaumann R, Reiss D, Frei S, Neukum G, Scholten F, Gwinner K, Roatsch T, Matz KD, Mertens V, Hauber E, Hoffmann H, Köhler U, Head JW, Hiesinger H, Carr MH (2005) Interior channels in Martian valleys: constraints on fluvial erosion by measurements of the mars express high resolution stereo camera. Geophys Res Lett 32(16):L16203. doi:10.1029/2005GL023415

    Google Scholar 

  • Javaux EJ (2006) Extreme life on Earth-past, present and possibly beyond. Res Microbiol 175: 37–48

    Google Scholar 

  • Javaux EJ, Benzerara K (2009) Microfossils. In: Gargaud M, Mustin C, Reisse J, Vandenabeele-Trambouze O (eds) Traces de vie présente ou passée: quels indices, signatures ou marqueurs? Compt Rendus Palevol Spec Issue 2009. doi:10.1016/j.crpv.2009.04.004; Published online

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463: 934–938. doi:10.1038/nature08793

    ADS  Google Scholar 

  • Kasting JF, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41: 429–463

    ADS  Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101: 108–128

    ADS  Google Scholar 

  • Knoll AH (2003) Life on a young planet, the first three billion years of evolution on earth. Princeton Univ Press, Princeton, NJ

    Google Scholar 

  • Knoll AH, Bambach RK (2000) Directionality in the history of life: diffusion from the left wall or repeated scaling of the right?. Paleobiology 26: 1–14

    Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Phil Trans R Soc B 361: 1023–1038

    Google Scholar 

  • Konhauser KO, Lalonde SV, Amskold L, Holland HD (2007) Was there really an Archean phosphate crisis?. Science 315: 1234

    ADS  Google Scholar 

  • Lammer H, Lichtenegger HIM, Kolb C, Ribas I, Guinan EF, Abart R, Bauer SJ (2003) Loss of water from mars: implications for the oxidation of the soil. Icarus 106: 9–25

    ADS  Google Scholar 

  • Lammer H, Dehant V, Korablev O, Lundin R (2007a) Planetary-Sun interactions. In: Fishbaugh K et al (eds) Geology and habitability of terrestrial planets. Space Sci Ser ISSI 24. Reprinted from Space Sci Rev, Springer, Dordrecht, The Netherlands. Space Sci Rev 129:205–206. doi:10.1007/s11214-007-9190-6

  • Lammer H, Lichtenegger HIM, Kulikov YN, Griemeier J-M, Terada N, Erkaev NV, Biernat HK, Khodachenko ML, Ribas I, Penz T, Selsis F (2007b) Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. Astrobiology 7(1): 185–207. doi:10.1089/ast.2006.0128

    ADS  Google Scholar 

  • Lammer H, Kasting JF, Chassefière E, Johnson RE, Kulikov YuN, Tian F (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev 139(1–4): 399–436. doi:10.1007/s11214-008-9413-5

    ADS  Google Scholar 

  • Lammer H, Bredehöft JH, Coustenis A, Khodachenko ML, Kaltenegger L, Grasset O, Prieur D, Raulin F, Ehrenfreund P, Yamauchi M, Wahlund J-E, Griessmeier J-M, Stangl G, Cockell CS, Kulikov YuN, Grenfell JL, Rauer H (2009) What makes a planet habitable?. Astronomy Astrophysics Rev 17(2): 181–249. doi:10.1007/s00159-009-0019-z

    ADS  Google Scholar 

  • Lazcano A (2008) Towards a definition of life: the impossible quest?. Space Sci Rev 135: 6. doi:10.1007/s11214-007-9283-2

    ADS  Google Scholar 

  • Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world and time. Cell 85: 793–798

    Google Scholar 

  • Léger A, Rouan D, Schneider J, Alonso R, Samuel B, Guenther E, Deleuil M, Deeg HJ, Fridlund M, et al (2009) Transiting exoplanets from the CoRoT space mission VII. COROT-Exo-7b: the first super-Earth with radius characterized. Astronomy Astrophys (in press)

  • Levison HF, Morbidelli A, Gomes R, Tsiganis K (2008) Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196: 258–273. doi:10.1016/j.icarus.2007.11.035

    ADS  Google Scholar 

  • López-García P (2006) Extremophiles. In: Gargaud M et al (eds) Lectures in astrobiology, vol I. Springer, Heidelberg. pp 257–282

  • López-García P, Moreira D, Douzery E, Forterre P, van Zuilen M, Claeys P, Prieur D (2006) Ancient fossil record and early evolution (ca. 3.8 to 0.5 Ga). Earth Moon Planets 98:247–290

    Google Scholar 

  • Lundin R, Lammer H, Ribas I (2007) Planetary magnetic fields and solar forcing: implications for atmospheric evolution. In: Fishbaugh K et al (eds) Geology and habitability of terrestrial planets. Space Sci Ser ISSI 24. Reprinted from space Sci Rev, Springer, Dordrecht, The Netherlands. Space Sci Rev 129(1–3):245-278. doi:10.1007/s11214-007-9176-4.

  • Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms, 9th edn. Prentice-Hall, NJ, p 991 pp

    Google Scholar 

  • Martin H, Albarède F, Claeys P, Gargaud M, Marty B, Morbidelli A, Pinti DL (2006a) Building of a habitable planet. In: Gargaud M et al (eds) From suns to life, a chronological approach to the history of life on Earth, pp 97–151

  • Martin H, Claeys P, Gargaud M, Pinti DL, Selsis F (2006b) Environmental context. In: Gargaud M et al (eds) From suns to life, a chronological approach to the history of life on Earth, pp 205–245

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature 409: 178–181

    ADS  Google Scholar 

  • Morbidelli A, Levison HF, Gomes R (2007) The dynamical structure of the Kuiper belt and its primordial origin. In: The solar system beyond neptune. Barucci A et al (eds) University of Arizona press, pp 275–292

  • Noffke N, Hazen RM, Nhleko N (2003a) Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology 31: 673–676. doi:10.1130/2FG19704.1

    ADS  Google Scholar 

  • Noffke N, Gerdes G, Klenke T (2003b) Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth Sci Rev 62: 163–176

    ADS  Google Scholar 

  • Noffke N, Eriksson KA, Hazen RM, Simpson EL (2006) A new window into early archean life: microbial mats in Earth’ s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34: 253–256. doi:10.1130/2FG22246.1

    ADS  Google Scholar 

  • O’Neill C, Lenardic A (2007) Geological consequences of super-sized Earths. Geophys Res Lett 34: L19204. doi:10.1029/2007GL030598

    ADS  Google Scholar 

  • Pace NR (2001) The universal nature of biochemistry. Proc Natl Acad Sci USA 98: 805–808

    ADS  Google Scholar 

  • Parnell J (2004) Plate tectonics, surface mineralogy, and the early evolution of life. Int J Astrobiol 3(2): 131–137. doi:10.1017/S1473550404002101

    MathSciNet  Google Scholar 

  • Pham LBS, Karatekin O, Dehant V (2009) The heavy bombardment phase: impact erosion and delivery to early Mars. In: Lammer H (ed) Early mars environment evolution. Spec Issue Astrobiol (in press)

  • Phillips RJ, Bullock MA, Hauck SA II (2001a) Climate and interior coupled evolution on Venus. Geophys Res Lett 28(9): 1779–1782

    ADS  Google Scholar 

  • Phillips RJ, Zuber MT, Solomon SC, Golombek MP, Jakosky BM, Banerdt WB, Smith DE, Williams RME, Hynek BM, Aharonson O, Hauck SA (2001b) Ancient geodynamics and global-scale hydrology on mars. Science 291(5513): 2587–2591. doi:10.1126/science.1058701

    ADS  Google Scholar 

  • Pizzarello S, Huang Y, Alexandre MR (2008) Molecular asymmetry in extraterrestrial chemistry: insights from a pristine meteorite. PNAS 105: 3700–3704. doi:10.1073/pnas.0709909105

    ADS  Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulfide. Nature 405: 676–679

    ADS  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455: 1101–1105

    ADS  Google Scholar 

  • Regenauer-Lieb K, Yuen DA, Branlund J (2001) The initiation of subduction: criticality by addition of water?. Science 294: 578–580

    ADS  Google Scholar 

  • Rosing MT (1999) C-13-depleted carbon microparticles in > 3700-Ma sea-floor sedimentary rocks from western Greenland. Science 283: 674–676

    ADS  Google Scholar 

  • Rosing MT, Bird DK, Sleep NH, Glassley W, Albarede F (2006) The rise of continents-an essay on the geologic consequences of photosynthesis. Palaeogeograph Palaeoclimatol Palaeoecol 232: 99–113

    Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409: 1092–1101

    ADS  Google Scholar 

  • Schopf JW (1993) Microfossils of the early archean apex chert: new evidence of the antiquity of life. Science 260: 640–646

    ADS  Google Scholar 

  • Selsis F, Kasting JF, Levrard B, Paillet J, Ribas I, Delfosse X (2007) Habitable planets around the star Gliese 581?. Astron Astrophys 476: 1373–1387. doi:10.1051/0004-6361:20078091

    ADS  Google Scholar 

  • Shen Y, Schidlowski M (2000) New C isotope stratigraphy from southwest China: implications for the placement of the precambrian-cambrian boundary on the yangtze platform and global correlations. Geology 28: 623–626. doi:10.1130/2F0091-7613/282000/2928/3C623/3ANCISFS/3E2.0.CO/3B2

    ADS  Google Scholar 

  • Shklovskii IS, Sagan C (1966) Intelligent Life in the Universe. San Francisco, Holden Day, p 509

    Google Scholar 

  • Solomon SC, Aharonson O, Aurnou JM, Banerdt WB, Carr MH, Dombard AJ, Frey HV, Golombek MP, Hauck SA, Head JW, Jakosky BM, Johnson CL, McGovern PJ, Neumann GA, Phillips RJ, Smith DE, Zuber MT (2005) New perspectives on ancient mars. Science 307(5713): 1214–1220. doi:10.1126/science.1101812

    ADS  Google Scholar 

  • Sotin C, Grasset O, Mocquet A (2007) Mass-radius curve for extrasolar Earth-like planets and ocean planets. Icarus 191: 337–351

    ADS  Google Scholar 

  • Southam G, Rothschild LJ, Westall F (2007) The geology and habitability of terrestrial planets: fundamental requirements for life. Space Sci Rev 129(1–3): 7–34. doi:10.1007/s11214-007-9148-8

    ADS  Google Scholar 

  • Spohn T (2007) Interior evolution and habitability, European mars science and exploration conference: mars express & ExoMars, session S.01 Mars interior and subsurface structure. Abstract

  • Sugitani K, Grey K, Allwood A, Nagaoka T, Mimura K, Minamif M, Marshall CP, Van Kranendonk MJ, Walter MR (2007) Diverse microstructures from Archaean chert from the Mount Goldsworthy-Mount Grant area, Pilbara Craton, Western Australia: microfossils, dubiofossils, or pseudofossils?. Precambrian Res 158: 228–262

    Google Scholar 

  • Tarduno JA, Cottrell RD, Watkeys MK, Hofmann A, Doubrovine PV, Mamajek EE, Liu DJ, Sibeck DG, Neukirch LP, Usui Y (2010) Geodynamo, solar wind, magnetopause 3.4 to 3.45 billion years ago. Science 327(5970): 1238–1240

    ADS  Google Scholar 

  • Tian F, Kasting JF, Solomon SC (2009) Thermal escape of carbon from the early Martian atmosphere. Geophys Res Lett 36: L02205. doi:10.1029/2008GL036513

    Google Scholar 

  • Tinetti G, Razhby S, Yung YL (2007) Detectability of red-edge shifted vegetation on terrestrial planets orbiting M-Stars ApJ. Letters 644: L129–L132

    ADS  Google Scholar 

  • Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature 435: 459–461

    ADS  Google Scholar 

  • Udry S, Bonfils X, Delfosse X, Forveille T, Mayor M, Perrier C, Bouchy F, Lovis C, Pepe F, Queloz D, Bertaux J-L (2007) The HARPSs earch for southern extra-solar planets. XI. Super-Earths (5 & 8 M) in a 3-planet system. Astron Astrophys 469: 43–47. doi:10.1051/0004-6361:20077612

    ADS  Google Scholar 

  • Valencia D, O’Connell RJ, Sasselov DD (2007) Inevitability of plate tectonics on super-Earths. Astrophys J 670: 45–48

    ADS  Google Scholar 

  • Van Thienen P, Benzerara K, Breuer D, Gillmann C, Labrosse S, Lognonné P, Spohn T (2007) Water, life, and planetary geodynamical evolution. In: Herring T, Schubert J (eds) Treatise of geophysics, invited paper, Elsevier. 129:67–203, doi:10.1007/s11214-007-9149-7

  • Van Zuilen M (2008) Stable isotope ratios as a biomarker on Mars. In: Botta O, Bada JL, Gomez-Elvira J, Javaux E, Selsis F, Summons R (eds) (2008) Strategies of life detection. Space Sci Ser ISSI 25:221–232

  • Westall F (1999) The nature of fossil bacteria: a guide to the search for extraterrestrial life. J Geophys Res 104: 16437–16450. doi:10.1029/1998JE900051

    ADS  Google Scholar 

  • Westall F, Steele A, Toporski Jan, Walsh M, Allen C, Guidry S, McKay D, Gibson E, Chafetz H (2000) Polymeric substances and biofilms as biomarkers in terrestrial materials: implications for extraterrestrial samples. J Geophys Res 105: 24511–24528. doi:10.1029/2000JE001250

    ADS  Google Scholar 

  • Wierzchos J, Sancho LG, Ascaso C (2005) Biomineralization of endolithic microbes in rocks from the McMurdo dry valleys of Antarctica: implications for microbial fossil formation and their detection. Environ Microbiol 7: 566–575

    Google Scholar 

  • Wright IP, Grady MM, Pillenger CT (1992) Chassigny and the nakhlites—Carbon-bearing components and their relationship to Martian environmental conditions. Geochim Cosmochim Acta 56: 817–826. doi:10.1016/0016-7037(92)90100-W

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle J. Javaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javaux, E.J., Dehant, V. Habitability: from stars to cells. Astron Astrophys Rev 18, 383–416 (2010). https://doi.org/10.1007/s00159-010-0030-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00159-010-0030-4

Keywords

Navigation